Infection by parasites disturbs flight behaviour in shoals of fish

Infection by parasites disturbs flight behaviour in shoals of fish.
Credit: WWU/Jörn Scharsack

Biologists study social responsiveness in fish

In order to escape predators, many fish – including insects, fish and birds – have developed strategies for rapidly transmitting information on threats to others of their species. This information is transmitted within a group of hundreds, or even thousands, of individuals in (escape) waves. This collective response is also, in the case of fish, known as shoal behaviour.

Special parasites can, however, manipulate such a survival strategy. Researchers at the University of Münster have discovered that infected individual fish disturb the transmission of flight behaviour and, as a result, increase not only their own risk of being eaten, but also that of other – non-infected – members of the group. The results of the study have been published in the journal Proceedings of the Royal Society.

Background and methodology

In order to study social responsiveness in fish, the researchers used the tapeworm Schistocephalus solidus as a parasite. The three-spined stickleback Gasterosteus aculeatus – an important model in ecological and evolutionary parasitology – was used as an intermediate host. The parasite ensures that the fish is less prone to be scared and more courageous and, as a result, increases its risk-taking behaviour. This poses the threat that the stickleback will very probably fall prey to the final host of the parasite, a fish-eating bird. In aquariums the scientists simulated a bird strike on shoals of sticklebacks.

“When the shoal consisted only of healthy – in other words, non-infected – sticklebacks, the escape wave continued quickly through the entire shoal after the bird strike, even though the sticklebacks at the back were only able to see the response of their conspecifics and not the bird strike itself”, explains Nicolle Demandt from the Institute of Evolution and Biodiversity at the University of Münster and lead author of the study. “When we placed infected sticklebacks in the middle of the shoal, the escape wave came to a virtual halt and it only got through to the fish at the back to a limited extent.”

Although the manipulation of behaviour on the part of parasites is widespread in the animal kingdom, many studies carried out so far have only concentrated on the infected animals themselves and on the manipulation of their behaviour. “Ours is the first experimental study which shows how individuals whose behaviour has been manipulated by parasites can influence the transmission of information and, as a result, collective flight responses – in other words, shoal behaviour,” explains Prof. Joachim Kurtz, in whose laboratory the study was carried out. The researchers examined the connection between parasitic infection and flight depth, as well as the time the fish spent in the danger zone before and after the bird strike.

Sticklebacks with a high parasitic infection displayed a tendency to take flight to not such a deep level and they remained in the danger zone for a longer period of time than did sticklebacks with less parasitic infection. “The result indicates that the loss of energy might play a role in the extent to which behaviour is manipulated,” explains Dr. Jörn Scharsack, who led the study. “Parasites remove energy from their hosts, which leads for example to a reduction in fat reserves and a higher food requirement. Infected fish should therefore invest less energy in flight response and return more quickly to looking for food.”

As sticklebacks are found in very different aquatic systems – e.g. clear lakes, turbid rivers and sea environments – transferring the results of the study to the fishes’ natural habitats depends on the local surroundings. In clear waters, the results can indeed be transferred to the natural habitat as the fish use their eyes to react to the signals from other sticklebacks taking flight. In more turbid surroundings, however, the fish can rely more on other senses. For example, by means of their lateral line organs they can feel even the smallest changes in pressure caused by the movements made by their neighbours in the shoal. Other factors influencing the transfer of the laboratory study to a natural environment are the size of the shoal, the number of infected individuals and the extent of their parasitic infection.

Should it be a general phenomenon that infected individuals have an influence on the collective responses of the entire group, this might be of wide-ranging significance for the animal kingdom – even including a possible influence of parasites on human group behaviour, say the researchers.

Media Contact

Joachim Kurtz
University of Münster

Alle Nachrichten aus der Kategorie: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

New machine learning tool tracks urban traffic congestion

UBER driver data helps track and potentially alleviate urban traffic congestion. A new machine learning algorithm is poised to help urban transportation analysts relieve bottlenecks and chokepoints that routinely snarl…

Voyager spacecraft detect new type of solar electron burst

Physicists report accelerated electrons linked with cosmic rays. More than 40 years since they launched, the Voyager spacecraft are still making discoveries. In a new study, a team of physicists…

Cooling electronics efficiently with graphene-enhanced heat pipes

Researchers at Chalmers University of Technology, Sweden, have found that graphene-based heat pipes can help solve the problems of cooling electronics and power systems used in avionics, data centres, and…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close