Simple method may improve computer memory, catalysts, ceramic/metal seals, and nanodevices

A method that creates smooth and strong interfaces between metals and metal oxides without high-temperature brazing has been patented by researchers at the National Nuclear Security Administration’s Sandia National Laboratories, Pacific Northwest National Laboratory, and the University of North Texas.

The method can improve magnetic random-access memories, which allow next-generation computers to boot up instantly yet retain their entire memories after power interruptions. Depositing flat, nanometer-thin crystalline and ferromagnetic metallic layers on similarly thin oxide layers increases strength, stability, and uniformity of the oxide-metal interface. This reduces manufacturing cost and requires less electricity to produce more rapid magnetic effects for the computer memory.

The inexpensive technique also may produce better, less expensive (more highly dispersed but stable) catalysts for chemical reactions, better ceramic/metal seals, and lead to improved nanodevices.

The method works by controlling the growth and interfacial strength of a metal deposited on an oxide layer. There are two distinct methods within the patent.

By fully hydroxylating the oxide surface and then cleansing it of impurities, a chemical reaction can oxidize a fraction of deposited metal atoms, incorporating them by strong ionic bonds into the oxide surface. However, these metal atoms also bind strongly to metallic atoms above them and serve as “anchors” to bind more metal. At sufficient concentration, laminar growth is achieved and crystallinity is observed by approximately six metal atomic layers. These findings are supported by both experimental and theoretical results.

Another method controls the wetting characteristics (that is, the layer-by-layer deposition) and increases adhesion between a metal and an oxide layer. By introducing or producing a sub-monolayer of negatively charged species (e.g., a fraction of hydroxyl-radical coverage) to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted. This increases the adhesion strength of the metal-oxide interface. The negatively charged species can either be deposited directly onto the oxide surface or in the form of a compound that dissociates on, or reacts with, the surface to form the negatively charged species. The deposited metal adatoms are thereby bound laterally to the negatively charged species as well as vertically to the oxide surface, binding them strongly to the surface of the oxide, while otherwise they are bound weakly. This method has also been demonstrated by experiment and supported by theory.

Media Contact

Neal Singer EurekAlert!

Further information:

http://www.sandia.gov

All news from this category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Researchers confront optics and data-transfer challenges with 3D-printed lens

Researchers have developed new 3D-printed microlenses with adjustable refractive indices – a property that gives them highly specialized light-focusing abilities. This advancement is poised to improve imaging, computing and communications…

Research leads to better modeling of hypersonic flow

Hypersonic flight is conventionally referred to as the ability to fly at speeds significantly faster than the speed of sound and presents an extraordinary set of technical challenges. As an…

Researchers create ingredients to produce food by 3D printing

Food engineers in Brazil and France developed gels based on modified starch for use as “ink” to make foods and novel materials by additive manufacturing. It is already possible to…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close