Ambient Intelligence laboratory

Today there are evermore intelligent objects, i.e., more devices that adapt to our needs. For example, there is intelligent clothing, intelligent computers, and intelligent household devices such as washing machines, music centres, lamps, and so on.

In fact, it is currently possible for a sensor at the entrance to a dwelling to recognise the voice or the odour of the owner and simultaneously open the door. It is also possible, on entering the house and depending on the mood or physical state of the proprietor, the music centre switches itself on, playing music suitable to the occasion, the lights turn themselves on with greater or lesser intensity and the walls change colour. And all this is done automatically. The devices talk to the owner and already know what language they have to speak as they have been pre-taught.

The term Ambient Intelligence arose in Europe. The European Commission created a group to define what was to be Ambient Intelligence and what applications could it be put to use.
What changes will this new technology bring?
To date we have done everything through reading and writing but, from here on, we propose using all the senses (including smell, hearing, voice and so on). The system of videoconferencing will become quite normal. Also, although currently how the objects are handled has to be learned and thanks to this new technology, it will be nevertheless the objects that will learn how we use them; today the users base themselves on words, tomorrow on contexts.

What is Tekniker doing?

At the European level it is the Philipps company that is developing much of this new technology and, in the United States, the MIT. These two bodies are researching all everyday objects and situations: household devices, cars, the effect of traffic and so on.

The Tekniker Technological Centre wants to focus on the industrial sector and to develop methods to give orders to machines. Thus, from the point of view of safety, the machine will be capable of recognising the operator and at all times tell him/her about which tool has to be used. In some cases the required tool can be supplied to the operator by a robot. Also, the machine will check on the operator’s good working practices such as the wearing of gloves.

The Tekniker project has just begun and will last for two years. The idea for now is to initiate a laboratory. They will use a machining tool, a specialised milling machine to be exact. This machine is currently being used in a conventional manner but, in the future, it will use voice and smell sensors and the operator will wear specialised glasses which will provide him/her with all the necessary information about the machine so that it can be operated more safely. In this way many mistakes can be avoided.

Thanks to electronic noses, there will be the possibility of controlling the quality of the product. If the mixtures of materials are incorrect, the electronic nose will detect an anomalous odour and warn the operator immediately.

The experts working on this project at Tekniker are aware that this technology also has drawbacks. In fact, amongst other things, will be less autonomous and have less privacy. Moreover, it is not advisable that there be too many sensors around the operators as this could interfere with their work. Sociologists are working on the project in order to analyse and provide solutions to these drawbacks.

Media Contact

Fco. Javier García Robles Basque Research

More Information:

http://www.tekniker.es

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors