New production processes increase efficiency

As part of the joint research project SONNE a new glas-glas module has been developed. Here the rear-side glas is put on.<br><br>Solarworld Freiberg<br>

The recently published BINE-Projektinfo brochure “Development of high-efficiency solar cells and modules” (10/2013) describes processes that make photovoltaic modules more durable and efficient. Scientists in the SONNE research consortium are working on increasing current module outputs of around 250 watts to more than 300 watts.

One method is to halve the cells using lasers. The solar cells are transported along a conveyor belt beneath a laser. This creates a rupture point on the rear side of the cells along which a mechanical cell divider separates the cells. The scientists developed their own special connection concept for the new cell size. This can be deployed with standard technology or a wire electrode. The resulting modules are more powerful than comparable modules with entire cells. The researchers calculated a gain in output of 6 Wp for a module with 245 Wp.

Metal contact lines on the solar cells close the electric circuit but do not shade the cell surface. One goal of the research project was to print contact lines that were as thin as possible. For this purpose a demonstration plant was developed and put into operation. With high-efficiency cells that were printed with 40-µm-wide lines, the efficiency increased by 0.2%.

In the SONNE project, ten companies and four research institutes are working on increasing the efficiency of modules made of crystalline silicon cells. The intention is to automate the developed production processes on an industrial scale and thus make them cheaper. SolarWorld Innovations GmbH is the project coordinator. Scientific project partners include the Fraunhofer Institute for Solar Energy Systems (ISE), the Institute for Solar Energy Research Hameln (ISFH), Chemnitz University of Technology and Mittweida University of Applied Sciences.

The BINE Projektinfo brochure, which can be obtained free of charge from the BINE Information Service at FIZ Karlsruhe, is available online at www.bine.info or by calling +49 (0)228 92379-0.

Press contact
Uwe Milles
presse(at)bine.info
About BINE Information Service
Energy research for practical applications
The BINE Information Service reports on energy research topics, such as new materials, systems and components, as well as innovative concepts and methods. The knowledge gained is incorporated into the implementation of new technologies in practice, because first-rate information provides a basis for pioneering decisions, whether in the planning of energy-optimised buildings, increasing the efficiency of industrial processes, or integrating renewable energy sources into existing systems.

About FIZ Karlsruhe

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure is a not-for-profit organization with the public mission to make sci-tech information from all over the world publicly available and to provide related services in order to support the national and international transfer of knowledge and the promotion of innovation.
Our business areas:
• STN International – the world’s leading online service for research and patent information in science and technology
• KnowEsis – innovative eScience solutions to support the process of research in all its stages, and throughout all scientific disciplines
• Databases and Information Services – Databases and science portals in mathematics, computer science, crystallography, chemistry, and energy technology

FIZ Karlsruhe is a member of the Leibniz Association (WGL) which consists of 87 German research and infrastructure institutions.

Media Contact

Rüdiger Mack idw

More Information:

http://www.bine.info/en

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

A world-first antibody-drug delivery system

It sounds like the stuff of science fiction: a man-made crystal that can be attached to antibodies and then supercharge them with potent drugs or imaging agents that can seek…

Revealed: How SARS-CoV-2 evades our immune system

Scientists at Hokkaido University and Texas A&M University have identified a key mechanism used by the SARS-CoV-2 virus to evade host immune systems. Researchers in Japan and the United States…

New approach developed to predict response of immunotherapies in lung cancer

New methodology at the University Hospital of Tübingen harnesses the function of platelets. At Tübingen University Hospital, a preclinical study led by Dr. Clemens Hinterleitner and Prof. Dr. Lars Zender,…

Partners & Sponsors