In world first — UNSW researchers convert sunlight to electricity with over 40 percent efficiency
The record efficiency was achieved in outdoor tests in Sydney, before being independently confirmed by the National Renewable Energy Laboratory (NREL) at their outdoor test facility in the United States.
The work was funded by the Australian Renewable Energy Agency (ARENA) and supported by the Australia-US Institute for Advanced Photovoltaics (AUSIAPV).
“This is the highest efficiency ever reported for sunlight conversion into electricity,” UNSW Scientia Professor and Director of the Advanced Centre for Advanced Photovoltaics (ACAP) Professor Martin Green said.
“We used commercial solar cells, but in a new way, so these efficiency improvements are readily accessible to the solar industry,” added Dr Mark Keevers, the UNSW solar scientist who managed the project.
The 40% efficiency milestone is the latest in a long line of achievements by UNSW solar researchers spanning four decades. These include the first photovoltaic system to convert sunlight to electricity with over 20% efficiency in 1989, with the new result doubling this performance.
“The new results are based on the use of focused sunlight, and are particularly relevant to photovoltaic power towers being developed in Australia,” Professor Green said.
Power towers are being developed by Australian company, RayGen Resources, which provided design and technical support for the high efficiency prototype. Another partner in the research was Spectrolab, a US-based company that provided some of the cells used in the project.
A key part of the prototype's design is the use of a custom optical bandpass filter to capture sunlight that is normally wasted by commercial solar cells on towers and convert it to electricity at a higher efficiency than the solar cells themselves ever could.
Such filters reflect particular wavelengths of light while transmitting others.
ARENA CEO Ivor Frischknecht said the achievement is another world first for Australian research and development and further demonstrates the value of investing in Australia's renewable energy ingenuity.
“We hope to see this home grown innovation take the next steps from prototyping to pilot scale demonstrations. Ultimately, more efficient commercial solar plants will make renewable energy cheaper, increasing its competitiveness.”
The 40% efficiency achievement is outlined in a paper expected to be published soon by the Progress in Photovoltaics journal. It will also be presented at the Australian PV Institute's Asia-Pacific Solar Research Conference, which begins at UNSW today (Monday 8 December).
About UNSW Scientia Professor Martin Green:
Known as the 'Father of photovoltaics', Martin Green is a Scientia Professor at UNSW and Director of the Australian National Energy Agency-supported Centre for Advanced Photovoltaics. He was formerly a Director of CSG Solar, a company formed specifically to commercialise the University's thin-film, polycrystalline-silicon-on-glass solar cell. His group's contributions to photovoltaics are well known including the development of the world's highest efficiency silicon solar cells and the successes of several spin-off companies.
He is the author of six books on solar cells and numerous papers in the area of semiconductors, microelectronics, optoelectronics and, of course, solar cells. International awards include the 1999 Australia Prize, the 2002 Right Livelihood Award (also known as the Alternative Nobel Prize), the 2004 World Technology Award for Energy and the 2007 SolarWorld Einstein Award. He was elected into the prestigious Fellowship of the Royal Society in 2013.
Media Contact
More Information:
http://www.unsw.edu.au/All latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
Time to Leave Home? Revealed Insights into Brood Care of Cichlids
Shell-dwelling cichlids take intense care of their offspring, which they raise in abandoned snail shells. A team at the Max Planck Institute for Biological Intelligence used 3D-printed snail shells to…
Smart Fabrics: Innovative Comfortable Wearable Tech
Researchers have demonstrated new wearable technologies that both generate electricity from human movement and improve the comfort of the technology for the people wearing them. The work stems from an…
Going Steady—Study Reveals North Atlantic’s Gulf Stream Remains Robust
A study by the University of Bern and the Woods Hole Oceanographic Institution in the USA concludes that the ocean circulation in the North Atlantic, which includes the Gulf Stream,…