Spintronics: New manufacturing process makes crystalline microstructures universally usable

Coloured electron microscopy image (pink: YIG-bridge, green: glue, gray: sapphire)
Image: AIP Applied Physics Letters

New storage and information technology requires new higher performance materials. One of these materials is yttrium iron garnet, which has special magnetic properties. Thanks to a new process, it can now be transferred to any material. Developed by physicists at Martin Luther University Halle-Wittenberg (MLU), the method could advance the production of smaller, faster and more energy-efficient components for data storage and information processing. The physicists have published their results in the journal “Applied Physics Letters”.

Magnetic materials play a major role in the development of new storage and information technologies. Magnonics is an emerging field of research that studies spin waves in crystalline layers. Spin is a type of intrinsic angular momentum of a particle that generates a magnetic moment. The deflection of the spin can propagate waves in a solid body. “In magnonic components, electrons would not have to move to process information, which means they would consume much less energy,” explains Professor Georg Schmidt from the Institute of Physics at MLU. This would also make them smaller and faster than previous technologies.

But until now, it has been very costly to produce the materials needed for this. Yttrium iron garnet (YIG) is often used because it has the right magnetic properties. “The problem so far has been that the very thin, high-quality layers that are required can only be produced on a specific substrate and cannot be detached,” explains Schmidt. The substrate itself has unfavourable electromagnetic properties.

The physicists have now resolved this issue by getting the material to form bridge-like structures. This enables it to be produced on the ideal substrate and later removed. “Then, in theory, these small platelets can be stuck to any material,” says Schmidt. The method was developed in his laboratory and is based on a manufacturing process that can be conducted at room temperature. In the current study, the scientists glued the platelets, which are only a few square micrometres in size, onto sapphire and then measured their properties. “We have also had good results at low temperatures,” says Schmidt. This is necessary for many high-frequency experiments carried out in quantum magnonics.

“The yttrium iron garnet platelets could also be glued to silicon, for example,” says Schmidt. This semiconductor is very frequently used in electronics. In addition, other thin-film microstructures of any shape can be produced from YIG. According to Schmidt, this is particularly exciting for hybrid components in which spin waves are coupled with electrical waves or mechanical vibrations.

The study was funded by the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG) as part of the Collaborative Research Center / Transregio 227.

Wissenschaftliche Ansprechpartner:

Professor Georg Schmidt
Leader of RG Nanostructured Materials / MLU
phone: +49 345 55-25320
email: georg.schmidt@physik.uni-halle.de
web: www.nano.physik.uni-halle.de/index.php

Originalpublikation:

Trempler, P. et al. Integration and characterization of micron-sized YIG structures with very low Gilbert damping on arbitrary substrates. Applied Physics Letters (2019). https://doi.org/10.1063/5.0026120

http://www.uni-halle.de

Media Contact

Ronja Münch Pressestelle
Martin-Luther-Universität Halle-Wittenberg

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Decisive breakthrough for battery production

Storing and utilising energy with innovative sulphur-based cathodes. HU research team develops foundations for sustainable battery technology Electric vehicles and portable electronic devices such as laptops and mobile phones are…

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Partners & Sponsors