Scientists fabricate nano-ruler

Scientists Fabricate Nano-ruler to Look into Longitudinal Plasmonic Field in A Nanocavity at Subnano-scale
Credit: CHEN Siyu

… to look into longitudinal plasmonic field in a nanocavity at subnano-scale.

In a research work published June 19 in Journal of the American Chemical Society reported an innovative study that a group of scientists who have been engaged in Surface-enhanced Raman spectroscopy (SERS), made a nano-ruler to look deeply into longitudinal plasmonic field in a nanocavity.

SERS is a highly sensitive and powerful spectral analysis technique applicable in various fields. In contrast to weak Raman scattering, SERS realized a dramatically enhanced Raman signal by up to 1010-15 , allowing the analysis of single molecules.

“We have been working on SERS technology for year and been trying to develop it. We all know clearly that how we develop the technology depends, to a large extent, on what we know about the plasmonic field. In experiments, we observed an uneven distribution in plasmonic field at nano-scale. But we lack theoretic and experimental support. So that we decided to figure it out.” YANG Liangbao who leads the team of Hefei Institutes of Physical Science, CAS explained why he and his coworkers conducted this research.

“Powerful tool was needed.” When recapped on the very beginning of the study, YANG and his team had to find some way to plasmonic field exploration. “We designed and fabricated the nanoruler to look into it in high spatial resolution,” added YANG.

YANG and his coworkers started their design.

They built a unique nanoruler with a ~7*10-10m spatial resolution that was actually a plasmonic nanocavity fabricated through combining ultrasmooth gold films and single gold nanoparticles.

As for their fabrication, a special and innovative structure was designed as spacer layer that was five layers of two-dimensional atomic crystal among which the researchers inserted a monolayer, WS2 as a SERS probe and the other four layers of MoS2 as reference layers.

This specialized design generated a quantitative SERS intensity strong enough to enable the quantitative and direct detection of longitudinal plasmonic field distribution.

Beside the fabrication and direct experiment, the team also resorted to theoretical derivation, calculations, and spectroscopic measurements to supplement and verify their study. All the research they have done just surprised them that longitudinal plasmonic field in an individual nanocavity was heterogeneously distributed with an unexpectedly large intensity gradient.

“We are all excited,” YANG expressed how excited he and his team were to offer a way of insight into plasmonic field in a nanocavity and, they thought, their work cast new light on understanding of plasmonics and SERS technology.

Journal: Journal of the American Chemical Society
DOI: 10.1021/jacs.2c03081

Media Contact

Weiwei Zhao
Hefei Institutes of Physical Science, Chinese Academy of Sciences
Office: 86-551-655-91206

Media Contact

Weiwei Zhao
Hefei Institutes of Physical Science, Chinese Academy of Sciences

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Giant mantle plume reveals Mars is more active than previously thought

Orbital observations unveil the presence of an enormous mantle plume pushing the surface of Mars upward and driving intense volcanic and seismic activity. On Earth, shifting tectonic plates reshuffle the…

Space atomic clocks could help uncover the nature of dark matter

Studying an atomic clock on-board a spacecraft inside the orbit of Mercury and very near to the Sun might be the trick to uncovering the nature of dark matter, suggests…

Photon-efficient volumetric imaging with light-sheet scanning fluorescence microscopy

New method harnesses image scanning superresolution for enhanced photon efficiency in light-sheet microscopy. In biological imaging, researchers aim to achieve 3D, high-speed, and high-resolution, with low photobleaching and phototoxicity. The…

Partners & Sponsors