Astronomers detect stellar ashes at dawn of time

Using a powerful instrument on a telescope in Hawaii, UK astronomers have found ashes from a generation of stars that died over 10 billion years ago. This is the first time that the tell-tale cosmic dust has been detected at such an early stage in the evolution of the universe.

Dr. Kate Isaak of Cambridge University will be announcing these exciting new results at the National Astronomy Meeting in Bristol on 11th April 2002.

Using the SCUBA (Submillimetre Common-User Bolometer Array) camera on the James Clerk Maxwell Telescope in Hawaii, the team of British astronomers observed a sample of the most distant quasars known, to detect their primeval `host` galaxies. The submillimetre wavelength radiation detected by SCUBA comes from large amounts of cool dust, a substance formed in supernovae and/or the atmospheres of old stars.

Team leader Dr. Robert Priddey (Imperial College) said “These quasars are the most distant submillimetre sources known. We`re looking more than nine-tenths of the way back to the birth of the universe in the Big Bang.”

The quasars are extremely far from us, as measured by their very high redshifts of 5-6. These huge distances mean that their light was emitted when the universe was less than a tenth of its current age — a mere billion years after the Big Bang. Consequently, the host galaxies are caught when they are extremely young, and when astronomers might expect to see a burst of star formation.

Dr. Priddey explained “It`s amazing enough that these quasars, powered by billion solar mass black holes, should already exist only a billion years after the Big Bang. That these quasars also appear to contain so much dust yields important clues to the formation of massive galaxies in the youthful cosmos.”

Although it is not yet known whether the dust in these quasars is heated by hot, young stars within the galaxy, or directly by the quasar itself, the very existence of the dust and its constituent elements such as silicon and carbon implies that a large mass of stars have already been born, grown old and expired, within only a billion years of the Big Bang.

Dr. Isaak said “These observations of very distant quasars are part of a programme looking at the submillimetre emission of quasars from low to high redshift. If we hunt for ever higher redshift quasars, we might catch the epoch at which the first dust forms.”

Team member Dr. Richard McMahon (University of Cambridge) added “The stars that made the carbon and silicon in these quasars are probably like the stars that made the carbon in our own bodies. It is very exciting to be able to learn when the chemical elements in our bodies were made. These quasars seem to be forming stars at a rate of around 1000 stars like the Sun per year.”

Media Contact

Dr Robert Priddey alphagalileo

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Perovskite solar cells soar to new heights

Metal halide perovskites have been under intense investigation over the last decade, due to the remarkable rise in their performance in optoelectronic devices such as solar cells or light-emitting diodes….

Blue hydrogen can help protect the climate

An international group of researchers led by the Paul Scherrer Institute and the Heriot-Watt University has carried out in-depth analyses of the climate impact of blue hydrogen. This is produced…

Genes associated with hearing loss visualised in new study

Researchers from Uppsala University have been able to document and visualise hearing loss-associated genes in the human inner ear, in a unique collaboration study between otosurgeons and geneticists. The findings…

Partners & Sponsors