Swimming 'to the left' gets bacteria upstream, and may promote infection

“Escherichia coli (E. coli) and some other pathogenic bacteria with flagella interact with the flow of liquid when they are near a surface,” said Hür Köser, assistant professor of electrical engineering at Yale and the study's senior author, who has collaborated with a diverse team of scientists for this study.

“Each cell normally has two to six flagella that can rotate together as a bundle and act as a propeller to drive the cell forward. Away from any boundaries, the cells swim in a straight line, but near a surface, opposing forces of flow and bacterial forward motion cause the bacteria to continuously swim to one side — to the left.” The study determined that swimming “to the left” is a hydrodynamic process that is fundamentally related to the way the cells propel themselves in this manner.

Köser and his colleagues show that this phenomenon allows flagellated bacteria, such as E. coli, to find crevices or imperfections on the surface, get trapped, and swim upstream. This allows the bacteria to eventually locate large reservoirs with richer sources of food and better conditions for multiplying.

“We think that upstream swimming of bacteria may be relevant to the transport of E. coli in the urinary tract,” said Köser. “It might also explain the high rates of infection in catheterized patients and the incidence of microbial contamination at protected wellheads. To our knowledge, this is the first time that a natural propensity to swim upstream has been discovered and described in bacteria.”

To study the hydrodynamics of these bacteria in a flow environment, Köser's team constructed microfluidic devices using soft lithography. Inside the devices they set up various flow patterns to observe the bacteria in channels that were only 150 or 300 microns wide and between 50 and 450 microns deep. They were able to observe how the bacteria moved at a wide range of flow rates — between 0.05 and 20 microliters per minute.

Media Contact

Janet Rettig Emanuel EurekAlert!

Weitere Informationen:

http://www.yale.edu

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Sludge-powered bacteria generate more electricity, faster

Changing the surface chemistry of electrodes leads to the preferential growth of a novel electroactive bacterium that could support improved energy-neutral wastewater treatment. To grow, electroactive bacteria break down organic…

New approach to fighting cancer could reduce costs and side effects

CAR-T biotherapeutics company Carina Biotech and researchers at the University of South Australia have developed a novel approach based on microfluidic technology to “purify” the immune cells of patients in…

COVID-19: Distancing and masks are not enough

Decades-old data is being used to describe the propagation of tiny droplets; now a fluid dynamics team has developed new models: Masks and distancing are good, but not enough. Wear…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close