A hidden twist in the black hole information paradox

This result gives a surprising new twist to one of the great mysteries about black holes.

Conventional (classical) information can vanish in two ways, either by moving to another place (e.g. across the internet), or by “hiding”, such as in a coded message. The famous Vernam cipher devised in 1917 or its relative the one-time pad cryptographic code are examples of such classical information hiding: the information resides neither in the encoded message nor in the secret key pad used to decipher it – but in correlations between the two.

For decades, physicists believed that both these mechanisms were applicable to quantum information as well, but Professor Braunstein and Dr Pati have demonstrated that if quantum information disappears from one place, it must have moved somewhere else.

In a paper published in the latest edition of Physical Review Letters, Braunstein and Pati derive their ‘no-hiding theorem’ and use it to study black holes which, in Einstein’s Theory of Relativity, are characterized as swallowing up anything that comes too close.

In the mid 1970s, Stephen Hawking showed that black holes eventually evaporate away in a steady stream of featureless radiation containing no information. But if a black hole has completely evaporated, where has the information about it gone? This long standing question is known as the black hole information paradox.

Now, Professor Braunstein and Dr Pati have ruled out the possibility that information might escape from the black hole but be somehow hidden in correlations between the Hawking radiation and the black hole’s internal state. Braunstein and Pati’s result demonstrates that the black hole information paradox is even more severe than previously believed.

Dr Pati said: “Our result shows that either quantum mechanics or Hawking’s analysis must break down, but it does not choose between these two possibilities.”

Professor Braunstein said: “The no-hiding theorem provides new insight into the different laws governing classical and quantum information. It shows that there’s got to be new physics out there.”

Media Contact

Professor Sam Braunstein alfa

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Detecting early-stage failure in electric power conversion devices

Researchers from Osaka University use non-destructive acoustic monitoring to identify the earliest stages of failure in silicon carbide power electronics, which will help in the design of more-durable power devices….

Build your own AI with ISAAC for error detection in production

Fraunhofer IDMT has developed a software tool for quality inspectors based on Artificial Intelligence (AI), which automates and simplifies the analysis of industrial sounds, for example in welding processes. Thanks…

BEAT-COVID – advanced therapy strategies against the pandemic

The present SARS-coronavirus-2 pandemic with all its effects on society – both health and economic – highlights the urgency of developing new therapies for COVID-19 treatment. At the same time,…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.