Nanomachine of the future captures great scientist's bold vision

James Clerk Maxwell, who is ranked along Isaac Newton and Albert Einstein for his contributions to science, imagined an atom-sized device — known as Maxwell's Demon — that could trap molecules as they move in a specific direction.

Now scientists at the University of Edinburgh, inspired by Maxwell's thought experiment in 1867, have been able to create such a “nanomachine” for the first time with their own “demon” inside it to ensnare the molecules as they move.

The work, published in the 1 February issue of the journal Nature, could ultimately lead to scientists harnessing the energy of the molecules to displace solid objects from a distance.

Professor David Leigh, of the University of Edinburgh's School of Chemistry, said: “Our machine has a device — or ‘demon' if you like — inside it that traps molecule-sized particles as they move in a certain direction. Maxwell reasoned that if such a system could ever be made it would need energy to work. Without energy, it might appear that the perpetual motion of the molecules could power other devices in the same way as a windmill, but Maxwell reasoned that this would go against the second law of thermodynamics.

“As he predicted, the machine does need energy and in our experiment it is powered by light. While light has previously been used to energise tiny particles directly, this is the first time that a system has been devised to trap molecules as they move in a certain direction under their natural motion. Once the molecules are trapped they cannot escape.”

Applications of the nanotechnology machine could include trapping molecules to generate a force in front of a solid object using a laser pen. By shining the pen in the direction you want the object to move, the force of the molecules could be harnessed to push the object along.

The invention of the nanotechnology machine builds on previous work at the university in which scientists were able to move a droplet of liquid up a slope using molecular force.

“Last year was the 175th anniversary of James Clerk Maxwell's birth in Edinburgh, so it is fitting that advances in science mean that we can finally create a machine like the hypothetical one he pondered over so long ago,” said Prof Leigh.

“Maxwell was instrumental to our understanding of light, heat, and the behaviour of atoms and molecules. Without the foundations that he laid down a century-and-a-half ago, the science that we are doing today would not have been possible.”

Media Contact

Tara Womersley EurekAlert!

Weitere Informationen:

http://www.ed.ac.uk

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

High-thermoresistant biopolyimides become water-soluble like starch

This is the first report for the syntheses of water-soluble polyimides which are Interestingly derived from bio-based resources, showing high transparency, tunable mechanical strength and the highest thermoresistance in water-soluble…

Land management in forest and grasslands

How much can we intensify? A first assessment of the effects of land management on the links between biodiversity, ecosystem functions and ecosystem services. Ecosystem services are crucial for human…

A molecular break for root growth

The dynamic change in root growth of plants plays an important role in their adjustment to soil conditions. Depending on the location, nutrients or moisture can be found in higher…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close