Research removes major obstacle from mass production of tiny circuits

Led by Stephen Chou, the Joseph C. Elgin Professor of Engineering at Princeton, the team worked to troubleshoot one form of nanoimprint lithography, a revolutionary method invented by Chou in the 1990s. Nanoimprint uses a nanometer-scale mold to pattern computer chips and other nanostructures, and is in marked contrast to conventional methods that use beams of light, electrons or ions to carve designs onto devices.

This technique allows for the creation of circuits and devices with features that are not much longer than a billionth of a meter, or nanometer — more than 10 times smaller than is possible in today's mass-produced chips, yet more than 10 times cheaper. Because of its unique capabilities and reasonable cost, nanoimprinting is a key solution to the future manufacturing of computer chips and a broad range of nanodevices for use in optics, magnetic data storage and biotechnology, among other disciplines.

In dispensing-based nanoimprinting, liquid droplets on the surface of a silicon wafer are pressed into a pattern, which quickly hardens to form the desired circuitry. This technique is more attractive to manufacturers than some other forms of nanoimprinting because it does not need to be done in an expensive vacuum chamber. However, the widespread use of the technique has been hindered by the formation of gas bubbles that distort the intended pattern.

“This is an important step because to benefit from the technology of nanoimprinting you need to be able to use it in mass manufacturing at low cost,” Chou said. The team's findings are reported today (Jan. 17, 2007) in the journal Nanotechnology.

In a series of experimental and theoretical studies, Chou and his colleagues studied the factors that cause air bubbles to form and explored ways to eliminate the sub-millimeter-sized scourges. By increasing the imprinting pressure or using liquids that have higher air solubility, they were able to dramatically increase the likelihood that the bubbles would dissolve in the liquid before it hardened.

Media Contact

Hilary Parker EurekAlert!

Weitere Informationen:

http://www.princeton.edu

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

An artificial cell on a chip

Researchers at the University of Basel have developed a precisely controllable system for mimicking biochemical reaction cascades in cells. Using microfluidic technology, they produce miniature polymeric reaction containers equipped with…

Specific and rapid expansion of blood vessels

Nature Communications: KIT researchers identify a new mechanism to control endothelial cell size and arterial caliber – basis for better treatment of heart infarct and stroke. Upon a heart infarct…

Climate change drives plants to extinction in the Black Forest in Germany

Climate change is leaving its mark on the bog complexes of the German Black Forest. Due to rising temperatures and longer dry periods, two plant species have already gone extinct…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close