The space simulator – modeling the universe on a budget

For the past several years, a team of University of California astrophysicists working at Los Alamos National Laboratory have been using a cluster of roughly 300 computer processors to model some of the most intriguing aspects of the Universe. Called the Space Simulator, this de facto supercomputer has not only proven itself to be one of the fastest supercomputers in the world, but has also demonstrated that modeling and simulation of complex phenomena, from supernovae to cosmology, can be done on a fairly economical basis.

According to Michael Warren, one of the Space Simulator’s three principal developers, “Our goal was to acquire a computer which would deliver the highest performance possible on the astrophysics simulations we wanted to run, while remaining within the modest budget that we were allotted. Building the Space Simulator turned out to be a excellent choice.”

The Space Simulator is a 294-node Beowulf cluster with theoretical peak performance just below 1.5 teraflops, or trillions of floating point operations per second. Each Space Simulator processing node looks much like a computer you would find at home than at a supercomputer center, consisting of a Pentium 4 processor, 1 gigabyte of 333 MHz SDRAM, an 80 gigabyte hard drive and a gigabit Ethernet card. Each individual node cost less than $1,000 and the entire system cost under $500,000. The cluster achieved Linpack performance of 665.1 gigaflops per second on 288 processors in October 2002, making it the 85th fastest computer in the world, according to the 20th TOP500 list (see www.top500.org). A gigaflop is a billion floating-point operations per second. Since 2002, the Space Simulator has moved down to #344 on the most recent TOP500 list as faster computers are built, but Warren and his colleagues are not worried. They built the Space Simulator to do specific astrophysics research, not to compete with other computers. It was never designed to compete with Laboratory’s massive supercomputers and, in fact, is not scalable enough to do so.

The Space Simulator has been used almost continuously for theoretical astrophysics simulations since it was built, and has spent much of the past year calculating the evolution of the Universe. The first results of that work were recently presented at a research conference in Italy by Los Alamos postdoctoral research associate Luis Teodoro. Further analysis of the simulations, in collaboration with Princeton University professor Uros Seljak, will soon be published in the prestigious journal Monthly Notices of the Royal Astronomical Society. In addition to simulating the structure and evolution of the Universe, the Space Simulator has been used to study the explosions of massive stars and to help understand the X-ray emission from the center of our galaxy.

The Space Simulator is actually the Laboratory’s third generation Beowulf cluster. The first was Loki, which was constructed in 1996 from 16 200 MHz Pentium Pro processors. Loki was followed by the Avalon cluster, which consisted of 144 alpha processors. The Space Simulator follows the same basic architecture as these previous Beowulf machines, but is the first to use Gigabit Ethernet as the network fabric, and requires significantly less space than a cluster using typical computers. The Space Simulator runs parallel N-body algorithms, which were originally designed for astrophysical applications involving gravitational interactions, but have since been used to model more complex particle systems.

In addition to Warren, the developers of the Space Simulator include Los Alamos staff members Chris Fryer and Patrick Goda. Los Alamos’ Laboratory-Directed Research and Development (LDRD) program provided funding for the Space Simulator research. LDRD funds basic and applied research and development focusing on employee-initiated creative proposals selected at the discretion of the Laboratory director.

Media Contact

Todd Hanson EurekAlert!

Further information:

http://www.lanl.gov/worldview

All news from this category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Researchers confront optics and data-transfer challenges with 3D-printed lens

Researchers have developed new 3D-printed microlenses with adjustable refractive indices – a property that gives them highly specialized light-focusing abilities. This advancement is poised to improve imaging, computing and communications…

Research leads to better modeling of hypersonic flow

Hypersonic flight is conventionally referred to as the ability to fly at speeds significantly faster than the speed of sound and presents an extraordinary set of technical challenges. As an…

Researchers create ingredients to produce food by 3D printing

Food engineers in Brazil and France developed gels based on modified starch for use as “ink” to make foods and novel materials by additive manufacturing. It is already possible to…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close