Researchers Find That Superman’s Teeth Can Superconduct

Researchers at the University of Warwick have found that phosphorus, an element commonly found in teeth, can act as a “superconductor” – but you would have to have the strength of Superman to clench your teeth hard enough for it to work – as it happens at a pressure of around 2.5 megabars – some 30,000 times harder than an ordinary human can clench their teeth.

Physicists were aware that lower pressures of around 0.1 megabars could convert the electrically insulating phosphorus to a form which can conduct and which allows limited superconductivity at 10 degrees Kelvin and under. Recently experimentalists have found that another form of phosphorus occurs when 2.5 megabars of pressure is applied which causes it to form a “body centred cubic” or bcc crystal structure, comprised of stacks of interpenetrating cubes of phosphorus atoms. Common metals such as iron and chromium have this structure at normal pressures. However it was not known until now if this form of phosphorus would superconduct.

Now University of Warwick physicists Sergey Ostanin and Julie Staunton have used a number of theoretical physics techniques to describe the movement of the electrons and ionic vibrations, which proves that this version of phosphorus is an even better superconductor than the phosphorus held under 0.1 megabars of pressure. The University of Warwick researchers predict that the bcc structure of phosphorus will in fact superconduct at temperatures of around 14-22 Kelvin.

In their research paper in Physical Review Letters the University of Warwick researchers further suggest a clever means of preserving and using the bcc structure without having to resort to the high pressures. They suggest that the structure lends itself to being grown by depositing the atoms on a substrate of iron which itself organizes into a bcc structure. Anchoring the bcc phosphorus in this way would create and maintain its useful superconducting structure. Furthermore if the phosphorus bcc layer were positioned between a pair ferromagnets one could create a “superconducting switch” in which the phosphorus could be switched from superconductor to regular conductor and back again.

For further details please contact:

Dr Julie Staunton, Dept of Physics
University of Warwick
Tel: 024 76 523381
Email: j.b.staunton@warwick.ac.uk

Media Contact

Peter Dunn University of Warwick

All news from this category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Bringing atoms to a standstill: NIST miniaturizes laser cooling

It’s cool to be small. Scientists at the National Institute of Standards and Technology (NIST) have miniaturized the optical components required to cool atoms down to a few thousandths of…

Record-breaking laser link could help us test whether Einstein was right

Scientists from the International Centre for Radio Astronomy Research (ICRAR) and The University of Western Australia (UWA) have set a world record for the most stable transmission of a laser signal through…

Adaptive optics with cascading corrective elements

A cascaded dual deformable phase plate wavefront modulator enables direct AO integration with existing microscopes–doubling the aberration correction range and greatly improving image quality. Microscopy is the workhorse of contemporary…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close