A Planet in Progress?

Scientists are one step closer to understanding how new planets form, thanks to research funded by the National Science Foundation (NSF) and carried out by a team of astrophysicists at the American Museum of Natural History.

Ben R. Oppenheimer, assistant curator in the museum's Department of Astrophysics, and his colleagues have used the Lyot Project coronograph attached to a U.S. Air Force telescope on Maui, Hawaii, to construct an image of material that seems to be coalescing into a body from the gas and dust cloud surrounding AB Aurigae, a well-studied star. The body is either a planet or a brown dwarf–something with mass between a star or a planet. Brown dwarfs have been found orbiting stars since a team that included Oppenheimer first discovered one in 1995.

The research results, accepted for publication in June's Astrophysical Journal, represent a significant step toward direct imaging and the study of exoplanets, which orbit stars other than the Sun, and may advance theories of planet and brown dwarf formations.

“The research builds upon Dr. Openheimer's past successes in the detection of a brown dwarf and several debris disks and take advantage of an improved, deformable, secondary mirror which was installed at the telescope facility in 2006,” said NSF Program Manager Julian Christou. “The image produced speaks directly to the biggest, unresolved question of planet formation–how the thick disk of debris and gas evolves into a thin, dusty region with planets.” Young stars generally have a lot of material caught in their gravitational pull–material that organizes itself into a disc over time. Astronomers believe planets form in this disc.

The image produced by Oppenheimer's team shows a horseshoe-shaped void in the disc with a bright point appearing as a dot in the void.

“The deficit of material could be due to a planet forming and sucking material onto it, coalescing into a small point in the image and clearing material in the immediate surroundings,” Oppenheimer said. “It seems to be indicative of the formation of a small body, either a planet or a brown dwarf.”

AB Aurigae is well-studied because it is young, between one and three million years old, and can therefore provide information on how stars and objects that orbit them form. One unresolved question about planet formation is how the initial thick, gas-rich disk of debris evolves into a thin, dusty region with planets. The observation of stars slightly older than AB Aurigae shows that at some point the gas is removed, but no one knows how this happens. AB Aurigae could be in an intermediate stage, where the gas is being cleared out from the center, leaving mainly dust behind.

“More detailed observations of this star can help solve questions about how some planets form, and can possibly test competing theories,” says Oppenheimer. And if this object is a brown dwarf, our understanding of them must be revamped as brown dwarfs are not believed to form in circumstellar materials, Oppenheimer said.

Media Contact

Diane Banegas EurekAlert!

Weitere Informationen:

http://www.nsf.gov

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Nanomaterials enable dual-mode heating and cooling device

Device could cut HVAC energy use by nearly 20% in the US. Engineers at Duke University have demonstrated a dual-mode heating and cooling device for building climate control that, if…

What social distancing does to a brain

Scientists discover a neuropeptide that reflects the current state of a fish’s social environment. Have you recently wondered how social-distancing and self-isolation may be affecting your brain? An international research…

Scientists solve big limitation of stratospheric balloon payloads

How do you cool a large telescope to absolute zero while flying it from a huge balloon at 130,000 feet? Nearly all photons emitted after the Big Bang are now…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close