Videos extract mechanical properties of liquid-gel interfaces

However important these liquid/solid boundaries may be, conventional methods cannot measure basic mechanical properties of these interfaces in their natural environments. Now, researchers at the National Institute of Standards and Technology (NIST) and the University of Minnesota have demonstrated a video method that eventually may be able to make measurements on these types of biological and industrial systems.*

Optical microrheology—an emerging tool for studying flow in small samples—usually relies on heat to stir up motion. Analyzing this heat-induced movement can provide the information needed to determine important mechanical properties of fluids and the interfaces that fluids form with other materials. However, when strong flows overwhelm heat-based motion, this method isn't applicable.

Motivated by this, researchers developed a video method that can extract optically basic properties of the liquid/solid interface in strong flows. The solid material they chose was a gel, a substance that has both solid-like properties such as elasticity and liquid-like properties such as viscosity (resistance to flow).

In between a pair of centimeter-scale circular plates, the researchers deposited a gel of polydimethylsiloxane (a common material used in contact lenses and microfluidics devices). Pouring a liquid solution of polypropylene glycol on the gel, they then rotated the top plate to create forces at the liquid/gel interface. The results could be observed by tracking the motion of styrene beads in the gel.

The researchers discovered that the boundary between the liquid and gel became unstable in response to “mechanical noise” (irregularities in the motion of the plates). Such “noise” occurs in real-world physical systems. Surprisingly, a small amount of this mechanical noise produced a lot of motion at the fluid/gel interface. This motion provided so much useful information that the researchers could determine the gel’s mechanical properties—namely its “viscoelasticity”—at the liquid/gel interface.

The encouraging results from this model system show that this new approach could potentially be applied to determining properties of many useful and important liquid/solid interfaces. The NIST/Minnesota approach has possible applications in areas as diverse as speech therapy where observing the flow of air over vocal cords could enable noninvasive measures of vocal tissue elasticity and help clinicians detect problems at an early stage. Also, this research may help clarify specific plastics manufacturing problems, such as “shear banding,” in which flow can separate a uniformly blended polymer undesirably into different components.

* E.K. Hobbie, S. Lin-Gibson, and S. Kumar Non-Brownian microrheology of a fluid-gel interface, To appear in Physical Review Letters.

Media Contact

Ben Stein EurekAlert!

More Information:

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Perovskite solar cells soar to new heights

Metal halide perovskites have been under intense investigation over the last decade, due to the remarkable rise in their performance in optoelectronic devices such as solar cells or light-emitting diodes….

Blue hydrogen can help protect the climate

An international group of researchers led by the Paul Scherrer Institute and the Heriot-Watt University has carried out in-depth analyses of the climate impact of blue hydrogen. This is produced…

Genes associated with hearing loss visualised in new study

Researchers from Uppsala University have been able to document and visualise hearing loss-associated genes in the human inner ear, in a unique collaboration study between otosurgeons and geneticists. The findings…

Partners & Sponsors