Queen’s University Belfast reveals plans for Ireland’s first x-ray laser

The research report will be presented during an international conference on X-ray Lasers at Queen’s this week. It has attracted leading scientists from the world’s major high-power laser laboratories who will be able to view the new sophisticated laser system at the University.

The new X-ray laser will be powered by another optical laser in Queen’s, which is one of the most powerful optical lasers available in any University laboratory worldwide.

Four hundred times more powerful than the entire UK National Grid for a very short time, it is known as TARANIS, (Terawatt Apparatus for Relativistic and Nonlinear Interdisciplinary Science). Named after the after the European Celtic god of thunder and lightning, it relies on a very powerful infra-red laser system which has been recently installed within the Centre for Plasma Physics at Queen’s.

Both laser systems will enable Queen’s researchers to attract and build a level of expertise in the general area of plasma physics, previously beyond the reach of an in-house university scale research programme in the UK.

Explaining the importance of the two laser systems, Professor Ciaran Lewis from Queen’s Centre for Plasma Physics said: “The need for an increased effort in plasma physics research and for more trained plasma physicists, is driven by the expanding use of plasmas in a wide range of applications in industry, including the effort to determine if laser-produced nuclear fusion can provide for the world’s post-oil power needs”.

“Plasmas are the ‘fourth state of matter’, along with gases, liquids and solids. In fact 99 per cent of the observable Universe, including the stars we see in the sky, is in the plasma state. X-ray lasers can be used to probe and diagnose very dense plasma conditions of the type, for example, anticipated in the core of fuel pellets compressed by powerful optical lasers. It is tremendously exciting that Queen’s laser systems are now capable of carrying out world-leading experiments involving laser-plasma interactions in extreme conditions.

“Highlighting these two new systems to our international research colleagues will ensure Queen’s Centre for Plasma Physics and its researchers remain to the fore of global breakthroughs in the area of high energy density physics. We are anticipating many new international collaborations.”

Over 30 invited speakers from countries including China, USA, Japan, Korea, Russia, France and Germany will cover recent experimental and theoretical developments in the field at the conference. Further information on the 11th International Conference on X-Ray Lasers can be found online at www.qub.ac.uk/XRL2008

For media enquiries please contact:
Lisa Mitchell, Press Officer,
+44 (0)28 9097 5384, Mob: 07814 422 572,
lisa.mitchell@qub.ac.uk

Media Contact

Lisa Mitchell alfa

Weitere Informationen:

http://www.qub.ac.uk

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

New solar cells for space

Almost all satellites are powered by solar cells – but solar cells are heavy. While conventional high-performance cells reach up to three watts of electricity per gram, perovskite and organic…

Development of a novel membrane laser module for spectral measurement methods

The Fraunhofer Institute for Applied Solid State Physics IAF has partnered up with the start-up “Twenty-One Semiconductors” (21s) from Stuttgart to bring their unique laser concept from lab to practice….

Dissecting protein assemblies

Super-resolution MINFLUX nanoscopy, developed by Nobel laureate Stefan Hell and his team, is able to discern fluorescent molecules that are only a few nanometers apart. In an initial application of…