Quantum Technology: Observation of a unique quantum state of matter

Picture of the artificial setup consisting of 14 individually trapped and accurately placed atoms, which gives rise to the realisatio of the topological phase. Institut d’optique, Palaiseau

Most states of matter are characterized by the concept of spontaneous symmetry breaking, e.g., the periodic arrangement of atoms in a solid breaks the translational symmetry, or Ferromagnets with all the magnetic moments pointing into the same direction break the rotational symmetry.

However, not all states of matter fall into this paradigm, and especially so-called topologcal phases can not be characterized by a broken symmetry. Examples in condensed matter are the integer as well as the fractional quantum Hall state, and topological insulators.

In the present publiaction, such a topological phase was realized in artificial matter consisting of up to 14 individually trapped atoms excited into Rydberg states. The strong interaction between the Rydberg states gives rise to a quantum many-body system, whose ground state is determined by a topological phase.

Due to the high control in such an artifical setup over the individual atoms, the unique properties of the topological phase could be direclty probed and observed such as the existence of robust edge states, a characteristic gapped excitation spectrum, as well as the appearance of a string order parameter.

The experimental observations performed within the group of Prof. Antoine Browaeys in Palaiseau are in exzellent agreement with the theoretical expectations analyzed by the group of Prof. Hans Peter Büchler in Stuttgart.

Hans Peter Büchler is professor in theoretical physics and head of the institute for theoretical physics III at the University of Stuttgart. This research on quantum many-body systems in artificial matter and the realization of topolgocal phases is funded by the European Research Council within the ERC project SIRPOL.

Furthermore, this research question is also part of the EU flagship on quantum technologies under the aspect of quantum simulators. The research is performed within a strong collaboration bewteen the theoretical group at the University of Stuttgart and the experimental group lead by Prof. Antoine Browaeys at the Institut d’optique in Palaiseau.

The research results are published in 1st August in Science online as first release:

Prof. Hans Peter Büchler, Head of the institute for theoretical physics III at the University of Stuttgart, 0711 685 64975, buechler@theo3.physik.uni-stuttgart.de


Media Contact

Andrea Mayer-Grenu idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

An artificial cell on a chip

Researchers at the University of Basel have developed a precisely controllable system for mimicking biochemical reaction cascades in cells. Using microfluidic technology, they produce miniature polymeric reaction containers equipped with…

Specific and rapid expansion of blood vessels

Nature Communications: KIT researchers identify a new mechanism to control endothelial cell size and arterial caliber – basis for better treatment of heart infarct and stroke. Upon a heart infarct…

Climate change drives plants to extinction in the Black Forest in Germany

Climate change is leaving its mark on the bog complexes of the German Black Forest. Due to rising temperatures and longer dry periods, two plant species have already gone extinct…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.