Quantum Technology: Observation of a unique quantum state of matter
Most states of matter are characterized by the concept of spontaneous symmetry breaking, e.g., the periodic arrangement of atoms in a solid breaks the translational symmetry, or Ferromagnets with all the magnetic moments pointing into the same direction break the rotational symmetry.
However, not all states of matter fall into this paradigm, and especially so-called topologcal phases can not be characterized by a broken symmetry. Examples in condensed matter are the integer as well as the fractional quantum Hall state, and topological insulators.
In the present publiaction, such a topological phase was realized in artificial matter consisting of up to 14 individually trapped atoms excited into Rydberg states. The strong interaction between the Rydberg states gives rise to a quantum many-body system, whose ground state is determined by a topological phase.
Due to the high control in such an artifical setup over the individual atoms, the unique properties of the topological phase could be direclty probed and observed such as the existence of robust edge states, a characteristic gapped excitation spectrum, as well as the appearance of a string order parameter.
The experimental observations performed within the group of Prof. Antoine Browaeys in Palaiseau are in exzellent agreement with the theoretical expectations analyzed by the group of Prof. Hans Peter Büchler in Stuttgart.
Hans Peter Büchler is professor in theoretical physics and head of the institute for theoretical physics III at the University of Stuttgart. This research on quantum many-body systems in artificial matter and the realization of topolgocal phases is funded by the European Research Council within the ERC project SIRPOL.
Furthermore, this research question is also part of the EU flagship on quantum technologies under the aspect of quantum simulators. The research is performed within a strong collaboration bewteen the theoretical group at the University of Stuttgart and the experimental group lead by Prof. Antoine Browaeys at the Institut d’optique in Palaiseau.
The research results are published in 1st August in Science online as first release:
https://science.sciencemag.org/content/early/2019/07/31/science.aav9105
Prof. Hans Peter Büchler, Head of the institute for theoretical physics III at the University of Stuttgart, 0711 685 64975, buechler@theo3.physik.uni-stuttgart.de
https://science.sciencemag.org/content/early/2019/07/31/science.aav9105
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Time to Leave Home? Revealed Insights into Brood Care of Cichlids
Shell-dwelling cichlids take intense care of their offspring, which they raise in abandoned snail shells. A team at the Max Planck Institute for Biological Intelligence used 3D-printed snail shells to…
Smart Fabrics: Innovative Comfortable Wearable Tech
Researchers have demonstrated new wearable technologies that both generate electricity from human movement and improve the comfort of the technology for the people wearing them. The work stems from an…
Going Steady—Study Reveals North Atlantic’s Gulf Stream Remains Robust
A study by the University of Bern and the Woods Hole Oceanographic Institution in the USA concludes that the ocean circulation in the North Atlantic, which includes the Gulf Stream,…