NASA keeps watch over space explosions

In its second phase, NASA's Magnetospheric Multiscale Mission -- MMS -- is watching magnetic reconnection in action behind Earth, as shown here by the tangled blue and red magnetic field lines. View animated GIF: https://www.nasa.gov/sites/default/files/thumbnails/image/mms_wide.gif Credit: Patricia Reiff/NASA Goddard/Joy Ng

Some fly out into space, while others are funneled along magnetic field lines into Earth's upper atmosphere where they create auroras, or wreak havoc on power grids in the case of an extremely large event.

NASA's Magnetospheric Multiscale mission, or MMS, has been observing such explosions­ — created in a process called magnetic reconnection — for three years.

Recently, in the second phase of its mission, MMS saw reconnection in Earth's magnetotail — the part of Earth's magnetic environment trailing behind the planet, away from the Sun — with enough resolution to reveal its true nature more clearly. The results have been published in the journal Science.

Magnetic reconnection occurs around Earth every day due to magnetic field lines twisting and reconnecting. It happens in different ways in different places, with different effects. In the magnetotail, for example, the process can create aurora near Earth.

In the magnetotail the event watched by MMS was found to fling particles symmetrically, unlike how it does on the sunward side of Earth. Out front, the solar wind — a constant flow of charged particles from the Sun — pushes into Earth's magnetic field.

Because of their different densities, the two sides connecting are unequal, which causes magnetic reconnection to occur asymmetrically. On the backside, however, in the magnetotail, the explosion stems from an entanglement of two sets of — similarly intense — Earth field lines, so the particles are accelerated nearly the same in both directions.

Magnetic reconnection also happens on the Sun and across the universe — in all cases forcefully shooting out particles and driving much of the change we see in dynamic space environments — so learning about it around Earth also helps us understand reconnection in faraway places where it's impossible to measure directly.

The more we understand about different types of magnetic reconnection, the more we can piece together what such explosions might look like elsewhere, and how we can better prepare for extreme events here on Earth.

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Customized programming of human stem cells

Induced pluripotent stem cells (iPS) have the potential to convert into a wide variety of cell types and tissues. However, the “recipes” for this conversion are often complicated and difficult…

Electronic skin has a strong future stretching ahead

A material that mimics human skin in strength, stretchability and sensitivity could be used to collect biological data in real time. Electronic skin, or e-skin, may play an important role…

Fast-moving gas flowing away from young star caused by icy comet vaporisation

A unique stage of planetary system evolution has been imaged by astronomers, showing fast-moving carbon monoxide gas flowing away from a star system over 400 light years away, a discovery…

Partners

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close