MA3Bi2I9 single-crystal enables X-ray detection down to nanograys per second
Researchers from China Academy of Engineering Physics, Nanjing University and University of Victoria demonstrated ultra-sensitive and stable X-ray detectors by using a new kind of 0D MA3Bi2I9 single-crystals.
The disconnecting of the (Bi2I9)3- units in the lattice leads to a high activation energy (Ea) for ion migration (0.46 eV) and is also accompanied by a low dark carrier concentration (~ 10 6 cm-3). The suppressed ion migration and lowered dark carrier concentration enable the desirable combination of high sensitivity, low LoD, and stable operation.
X-ray detectors with a low LoD of 0.62 nGyair s-1 was achieved with a 100 kVp tungsten-target X-ray tube, which approaches the background radiation on Earth (~0.1 nGyair s-1), and is significantly lower than the dose rate required for X-ray diagnostics (5.5 μGyair s-1).
Additionally, the reported X-ray sensitivity of 10,620 μC Gyair-1 cm-2 is comparable to the values obtained in 3D perovskite detectors (1.1 × 10 4 μC Gyair-1 cm-2 for MAPbI3 and 2.1 × 10 4 μC Gyair-1 cm-2 for hybrid MAPbBr3/Si) and 2D perovskite detectors (8,400 μC Gyair-1 cm-2 for (NH4)3Bi2I9).
It is worth noting that, unlike 2D hybrid Bi halide perovskites that cannot obtain low LoD and high sensitivity in the same direction, 0D MA3Bi2I9 X-ray detectors achieve simultaneously low LoD and high X-ray sensitivity in the out-of-plane transport mode.
The 0D perovskite X-ray detectors exhibit stable operation even under high applied biases up to 120 V. No deterioration in detection performance was observed following an X-ray irradiation dose of ~23,800 mGyair, equivalent to > 200,000 times of the dose used in acquiring commercial X-ray chest radiographs.
The advance presented herein provides a promising X-ray detector candidate in X-ray imaging and medical applications. This work was published in Journal of Energy Chemistry.
###
See the article: https:/
This work is supported by the National Natural Science Foundation of China (Grant Nos. 21773218, 61974063), the Sichuan Province (Grant No. 2018JY0206) and the Presidential Foundation of CAEP (Grant No. YZJJLX2018007).
Media Contact
More Information:
http://dx.doi.org/10.1016/j.jechem.2020.02.049All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Humans vs Machines—Who’s Better at Recognizing Speech?
Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…
Not Lost in Translation: AI Increases Sign Language Recognition Accuracy
Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…
Breaking the Ice: Glacier Melting Alters Arctic Fjord Ecosystems
The regions of the Arctic are particularly vulnerable to climate change. However, there is a lack of comprehensive scientific information about the environmental changes there. Researchers from the Helmholtz Center…