Doubts about basic assumption for the universe

Expansion of the universe: The blue areas expand more slowly than expected, the yellow areas faster. In isotropy, the image would be monochromatic red. © Konstantinos Nikolaos Migkas, Uni Bonn/Astronomy & Astrophysics

Since the big bang, the universe has swollen like a freshly formed raisin roll put in a warm place to rise. Until recently, it was thought that this increase in size was occurring evenly in all directions, as with a good yeast dough. Astrophysicists call this “isotropy”.

Many calculations on the fundamental properties of the universe are based on this assumption. It is possible that they are all wrong – or at least, inaccurate – thanks to compelling observations and analyses of the scientists from the Universities of Bonn and Harvard.

For they have put the isotropy hypothesis to the test for the first time with a new method that allows more reliable statements than before. With an unexpected result: According to this method, some areas in space expand faster than they should, while others expand more slowly than expected.

“In any case, this conclusion is suggested by our measurements,” states Konstantinos Migkas, from the Argelander Institute for Astronomy at the University of Bonn.

Migkas and his colleagues have developed a new, efficient isotropy test in their study. It is based on the observation of so-called galaxy clusters – in a sense, the raisins in the yeast bun. The clusters emit X-ray radiation that can be collected on Earth (in this case, this was done by the satellite-based telescopes Chandra and XMM-Newton).

The temperature of the galaxy clusters can be calculated based on certain characteristics of the radiation. Also, their brightness can be measured. The hotter they are, the brighter they glow.

In an isotropic universe, a simple rule applies. The further away a celestial object is from us, the faster it moves away from us. From its speed, we can therefore deduce its distance from us, regardless of the direction in which the object lies. At least that's what we thought until now. “In reality, however, our brightness measurements seem to disagree with the above distance calculation,” Migkas emphasizes.

This is because the amount of light that reaches the earth decreases with increasing distance. So, anyone who knows the original luminosity of a celestial body and its distance knows how bright it should shine in the telescope image. And it is precisely at this point that scientists have come across discrepancies that are difficult to reconcile with the isotropy hypothesis: that some galaxy clusters are much fainter than expected. Their distance from Earth is probably much greater than calculated from their speed. And for some others, however, the opposite is the case.

“There are only three possible explanations for this,” states Migkas, who is doing his doctorate in the research group of Prof. Dr. Thomas Reiprich at the Argelander Institute.

“Firstly, it is possible that the X-ray radiation, whose intensity we have measured, is attenuated on its way from the galaxy clusters to Earth. This could be due to as yet undiscovered gas or dust clouds inside or outside the Milky Way. In preliminary tests, however, we find this discrepancy between measurement and theory not only in X-rays but also at other wavelengths. It is extremely unlikely that any kind of matter nebula absorbs completely different types of radiation in the same way. But we won't know for sure for several months.”

A second possibility are so-called “bulk flows”. These are groups of neighboring galaxy clusters that move continuously in a certain direction – for example, due to some structures in space that generate strong gravitational forces. These would therefore attract the galaxy clusters to themselves and thus change their speed (and thus also their derived distance). “This effect would also mean that many calculations on the properties of the local universe would be imprecise and would have to be repeated,” explains Migkas.

The third possibility is the most serious: What if the universe is not isotropic at all? What if – metaphorically speaking – the yeast in the galactic raisin roll is so unevenly distributed that it quickly bulges in some places while it hardly grows at all in other regions?

Such an anisotropy could, for example, result from the properties of the mysterious “dark energy”, which acts as an additional driving force for the expansion of the universe. However, a theory is still missing that would make the behavior of the Dark Energy consistent with the observations. “If we succeed in developing such a theory, it could greatly accelerate the search for the exact nature of this form of energy,” Migkas is certain.

The current study is based on data from more than 800 galaxy clusters, 300 of which were analysed by the authors. The remaining clusters come from previously published studies. The analysis of the X-ray data alone was so demanding that it took several months. The new satellite-based eROSITA X-ray telescope is expected to record several thousand more galaxy clusters in the coming years. At the latest then it will become clear whether the isotropy hypothesis really has to be abandoned.

Konstantinos Nikolaos Migkas
Argelander Institute for Astronomy at the University of Bonn
International Max Planck Research School for Astronomy and Astrophysics
Phone: +49-(0)228-733462
E-mail: kmigkas@astro.uni-bonn.de

Prof. Dr. Thomas H. Reiprich
Argelander Institute for Astronomy at the University of Bonn
Phone: +49-(0)228-733642
E-Mail: reiprich@astro.uni-bonn.de

K. Migkas, G. Schellenberger, T. H. Reiprich, F. Pacaud, M. E. Ramos-Ceja and L. Lovisari: Probing cosmic isotropy with a new X-ray galaxy cluster sample through the L X – T scaling relation; Astronomy & Astrophysics; DOI: 10.1051/0004-6361/201936602

Media Contact

Johannes Seiler idw - Informationsdienst Wissenschaft

More Information:

http://www.uni-bonn.de/

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

EEG ad tDCS chould serve as the basis of therapeutic strategies to combat newrological disorders. Image Credit: Institute of Science Tokyo

Using Electroencephalography to Improve Language Disorder Treatments

Researchers work towards an inexpensive and portable solution for treating aphasia  Electroencephalography (EEG) may offer a more accessible alternative to functional magnetic resonance imaging (fMRI) for guiding transcranial direct current…

The BioSCape team is poctured with NASA and South African aircraft. Image Credit: Jeremey Shelton/Fishwater Films

Measuring Life on Earth from Space: A Global Research Project

Measurements and data collected from space can be used to better understand life on Earth. An ambitious, multinational research project funded by NASA and co-led by UC Merced civil and…

NEJM study finds patients with blockages in medium-sized vessels in the brain who had endovascular treatment did not do any better and did not see any improvement compared to patients who had the standard of care. Dr. Michael Hill, MD, Dr. Mayank Goyal, MD, PhD (right). Image Credit: Riley Brandt, University of Calgary

Best Approach for Stroke in Medium-Sized Blood Vessels Identified

Calgary’s Stroke Program advancing science to improve care, treatment and outcomes for patients  University of Calgary’s Hotchkiss Brain Institute researchers with the Calgary Stroke Program at Foothills Medical Centre revolutionized…