Cost-effective lasers for extended SWIR applications

Lasers of PbS colloidal quantum dots.
Credit: ICFO

Current laser technologies for the extended SWIR spectral range rely on expensive and complex materials, limiting their scalability and affordability. To address these challenges, ICFO researchers Dr. Guy L. Withworth, Dr. Carmelita Roda, Dr. Mariona Dalmases, Dr. Nima Taghipour, Miguel Dosil, Dr. Katerina Nikolaidou, Hamed Dehghanpour, led by ICREA Prof. Gerasimos Konstantatos, have presented a novel approach based on colloidal quantum dots in an Advanced Materials article. The team managed to emit coherent light (a necessary condition to create lasers) in the extended SWIR range with large colloidal quantum dots made of lead sulfide (PbS).

This new CQD-based technology offers a solution to the aforementioned challenges while maintaining compatibility with silicon CMOS platforms (the technology used for constructing integrated circuit chips) for on-chip integration.

Their PbS colloidal quantum dots are the first semiconductor lasing material to cover such a broad wavelength range. Remarkably, the researchers accomplished this without altering the dots’ chemical composition. These results pave the way towards the realization of more practical and compact colloidal quantum dots lasers. Further to that, the team demonstrated lasing – for the first time in PbS quantum dots- with nanosecond excitation, replacing the need for bulky and costly femtosecond laser amplifiers. That was achieved by employing larger quantum dots, increasing thus the absorption cross-section of the dots tenfold, leading to a dramatic reduction in the optical gain threshold –the point at which the laser light emission becomes an efficient process.

The ability to produce low-cost, scalable infrared lasers in the extended SWIR range addresses critical bottlenecks in various technologies. This innovation has transformative potential for diverse applications, including hazardous gas detection, eye-safe LIDAR systems, advanced photonic integrated circuits, and imaging within the SWIR biological window. Industries relying on LIDAR systems, gas sensing, and biomedicine could greatly benefit from this cost-effective and integrable solution. Moreover, this breakthrough supports the transition to silicon-compatible photonic integrated circuits, enabling greater miniaturization and widespread adoption.

Our work represents a paradigm shift in infrared laser technology,” said ICREA Prof. Gerasimos Konstantatos. “For the first time, we’ve achieved lasing in the extended SWIR range with solution-processed materials at room temperature, paving the way for practical applications and the development of more accessible technologies.”

Reference:

G. L. Whitworth, C. Rodá, M. Dalmases, N. Taghipour, M. Dosil, K. Nikolaidou, H. Dehghanpour, G. Konstantatos, Extended Short-Wave Infrared Colloidal Quantum Dot Lasers with Nanosecond Excitation. Adv. Mater. 2024, 2410207.

DOI: https://doi.org/10.1002/adma.202410207

Link to the research group of Dr. Gerasimos Konstantatos:

https://www.icfo.eu/research-group/17/sp-nanophotonic-devices/home/437/

Journal: Advanced Materials
DOI: 10.1002/adma.202410207
Article Title: Extended Short-Wave Infrared Colloidal Quantum Dot Lasers with Nanosecond Excitation

Media Contact

Alina Hirschmann
ICFO-The Institute of Photonic Sciences
alina.hirschmann@icfo.eu
Cell: 637287037

www.icfo.eu

Media Contact

Alina Hirschmann
ICFO-The Institute of Photonic Sciences

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Illustration of the thermodynamics-inspired laser beam shaping process in optical thermodynamics research.

Thermodynamics-Inspired Laser Beam Shaping Sparks a Ray of Hope

Inspired by ideas from thermodynamics, researchers at the University of Rostock and the University of Southern California have developed a new method to efficiently shape and combine high-energy laser beams….

Covalent Organic Framework COF-999 structure for CO2 absorption

A Breath of Fresh Air: Advanced Quantum Calculations Enable COF-999 CO₂ Adsorption

Quantum chemical calculations at HU enable the development of new porous materials that are characterized by a high absorption capacity for CO2 Climate experts agree: To overcome the climate crisis,…

Satellite imagery showing vegetation loss due to multi-year droughts

Why Global Droughts Tied to Climate Change Have Left Us Feeling Under the Weather

A study led by the Swiss Federal Institute for Forest, Snow and Landscape Research WSL shows that there has been a worrying increase in the number of long droughts over…