Computers help scientists understand the particles that make up atoms

An artist’s representation of two protons colliding. Protons contain quarks and gluons. Computer calculations help scientists understand how quarks and gluons define protons and neutrons.
Image courtesy of Andy Sproles, Oak Ridge National Laboratory

A team studied some of the smallest particles in the Universe on the nation’s fastest computer, Summit at Oak Ridge National Laboratory.

The Science

Scientists use particle accelerators to speed up electrically charged particles to nearly the speed of light. They then smash those particles together to study the new particles that form, including quarks. However, free quarks cannot be directly observed in isolation due to color confinement. This phenomenon means certain particles, including quarks and gluons, cannot be isolated. This makes it difficult to study those particles. Now, a team has developed a new method to simulate how quarks combine and interact to make up the larger particles that form the atom’s nucleus. These simulations need a lot of computing power. One way to make them simpler is to simulate quarks that are heavier than the quarks found in nature. Thanks to the power of the Summit supercomputer, the team simulated much lighter quarks than possible in the past. The combination of the power of Summit with the new method created more realistic results.

The Impact

The team’s results can be compared with experimental studies. These comparisons help nuclear scientists understand how quarks make up neutrons and protons, the larger particles inside atoms in the Standard Model of Particle Physics. Understanding the properties of individual particles may help scientists draw conclusions about what happens near an important particle called the Higgs boson. The Higgs boson is a particle that is associated with a field that appears to give mass to other elementary particles that interact with it.

Summary

Predicting how quarks interact with other particles is a huge challenge in physics. A team has tackled part of this challenge using the Summit supercomputer at Oak Ridge National Laboratory. Summit is the nation’s fastest supercomputer. The team needed to simulate how particles interact while in a vacuum and subject to the strong force. They used simulated snapshots of the strong force field in the vacuum to calculate what would happen as the particles moved through this field. The calculations required the power of the Summit supercomputer because of the large number of vacuum snapshots needed to get meaningful results. In total, the team took more than 1,000 snapshots over three different masses in simulated cubes with grids ranging from 32,768 to 262,144 points in space. This research will allow scientists to apply these results to real-life data, enabling better predictions about subatomic matter.

Funding

This work was supported by the Department of Energy (DOE) Office of Science Nuclear Physics Program and Jefferson Science Associates, LLC. Three of the researchers were supported by DOE Office of Science Graduate Student Research fellowships through the Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research program. Computing time was granted by the John von Neumann Institute for Computing; William & Mary, through contributions from the National Science Foundation and the Commonwealth of Virginia Equipment Trust Fund; the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility; and the Oak Ridge Leadership Computing Facility, also a DOE Office of Science User Facility.

Publications

Joó, Bálint et al., Parton Distribution Functions from Ioffe Time Pseudodistributions from Lattice Calculations: Approaching the Physical PointPhysical Review Letters 125, 232003 (2020). [DOI: 10.1103/PhysRevLett.125.232003]

Media Contact

Michael Church
michael.church@science.doe.gov
Office: 2028416299

Media Contact

Michael Church
DOE/US Department of Energy

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors