Complex pathways influence time delay in ionization of molecules

See caption.
Credit: AG Sansone / University of Freiburg

Study shows how the mechanism of photoionization can be used to gain insights into complex molecular potentials.

How can researchers use the mechanism of photoionization to gain insight into complex molecular potential? This question has now been answered by a team led by Prof. Dr. Giuseppe Sansone from the Institute of Physics at the University of Freiburg. The researchers from Freiburg, the Max Planck Institute for Nuclear Physics in Heidelberg and groups at the Universidad Autonoma in Madrid/Spain and the University of Trieste/Italy have published their results in the journal Nature Communications.

In the origin of photoionization, also called the photoelectric effect, an atom or molecule absorbs one quantum of light, usually indicated as photon, from an external field. The energy absorbed in this process is transferred to an electron, which is freed, leaving behind a singly charged ion. In several aspects and for several applications, the effect can be regarded as instantaneous, meaning that there is no significant time delay between the absorption of the photon and the instant when the electron is emitted. However, several experiments conducted in the last years have evidenced that tiny, but measurable delays lying in the attosecond range (1 as=10-18 s) occur between these two processes.

Generation of attosecond pulses

“Thanks to the advanced laser sources and specially designed spectrometers available in our laboratory, we can generate the shortest bursts of light, lasting only few hundreds of attoseconds,” Sansone explains. “Moreover, we can reconstruct the orientation of simple molecules when they absorb a photon from an external laser pulse. We have used such pulses to investigate the motion of the electrons after the absorption of a photon.”

Electrons experience paths with potential peaks and valleys

The researchers found that on its way out from the molecule, the electron experiences a complex landscape characterized by potential peaks and valleys. These are determined by the spatial distribution of the atoms composing the system. The path followed by the electron during its motion can affect the time it takes to be freed.

Extension to more complex molecular systems possible

In the experiment, the team measured the time delays accumulated by the electrons emitted from CF4 molecules in different spatial directions were measured using an attosecond pulse train combined with an ultrashort infrared field. “Combining this information with the characterization of the spatial orientation of the molecule, we can understand how the potential landscape and, in particular, potential peaks affect the time delay”,” says the Freiburg physicist.

The work can be extended to more complex molecular systems and to potentials changing on ultrashort timescales. In general, Sansone emphasizes, this approach could give the possibility to map complex potential landscapes from within, with unprecedented temporal resolution.

Caption:
Potential landscape of a CF4 molecule, in which a central carbon atom (gray) is surrounded by four fluorine atoms (green) positioned at the vertices of a tetrahedron. The three projections are cuts of the molecular potential, with the blue and red regions indicating points of positive and negative potential energy, respectively. Credit: AG Sansone

Wissenschaftliche Ansprechpartner:

Prof. Dr. Giuseppe Sansone
Institute of Physics
University of Freiburg
Phone: +49 (0)761 / 203 – 5738
E-Mail: giuseppe.sansone@physik.uni-freiburg.de

Originalpublikation:

Ahmadi, H., Plésiat, E., Moioli, M., Frassetto,F., Poletto, L., Decleva, P., Schröter, C. D., Pfeifer, T., Moshammer, R., Palacios, A., Martin, F., Sansone, G. (2022): Attosecond photoionisation time delays reveal the anisotropy of the molecular potential in the recoil frame. In: Nature Communications. Vol. 13, 1242. https://doi.org/10.1038/s41467-022-28783-x

Weitere Informationen:

https://kommunikation.uni-freiburg.de/pm-en/press-releases-2022/complex-pathways…

Media Contact

Rimma Gerenstein Hochschul- und Wissenschaftskommunikation
Albert-Ludwigs-Universität Freiburg im Breisgau

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Distance learning can improve women’s access to vocational training as animal health care practitioners in Nepal. Image Credit: Heifer International

Hybrid Job Training Boosts Women’s Participation in Nepal

Globally, women’s workforce participation is about 25% lower than men’s, often due to barriers such as domestic responsibilities and cultural norms. Vocational training can increase employment opportunities, but women may…

CO2release increase under repeated drying-rewetting cycles (DWCs). Image Credit: Suzuki, Nagano et al., 2025 SOIL

Drying and Rewetting Cycles Boost Soil CO2 Emissions

Niigata, Japan – The amount of carbon dioxide (CO2) released by microbial decomposition of soil organic carbon on a global scale is approximately five times greater than the amount of…

A new drug delivery system shows promise for treating a rare, aggressive form of cancer affecting pregnant women and new mothers. Oregon State's Olena Taratula and collaborators including OSU postdoctoral researcher Babak Mamnoon and Maureen Baldwin, a physician at Oregon Health & Science University, designed a type of drug nanocarrier known as a polymersome to specifically target a protein in choriocarcinoma cells. Depicted is a polymersome with its methotrexate cargo. Illustration by Parinaz Ghanbari. Image Credit: Parinaz Ghanbari

Improved Treatment Method for Rare Pregnancy-Related Cancer

PORTLAND, Ore. – A new drug delivery system shows promise for treating a rare, aggressive form of cancer affecting pregnant women and new mothers, and it has potential with other…