Building an atomic-scale vacuum trap for spin-polarized electrons
They placed an atomically sharp magnetic probe tip in front of a magnetic sample surface, thereby realizing a one-dimensional trap for electrons in the gap.
Only when resonance conditions in terms of electron energy and spin are fulfilled, standing wave states evolve in the trap, and injection of spin-polarized electrons into these states allows for the investigation of single electron reflection at the underlying atom at the surface.
Providing unprecedented insights into the atomic-scale scattering mechanism, the study potentially paves the way towards future spintronic devices employing spin-dependent electron scattering and transport.
Dr. Anika Schlenhoff
Department of Physics
University of Hamburg
Phone: +49 40 42838 6201
E-Mail: aschlenh@physnet.uni-hamburg.de
Prof. Dr. Roland Wiesendanger
Department of Physics
University of Hamburg
Phone: +49 40 42838 5244
E-Mail: wiesendanger@physnet.uni-hamburg.de
A. Schlenhoff, S. Kovařík, S. Krause, and R. Wiesendanger,
Vacuum resonance states as atomic-scale probes of noncollinear surface magnetism,
Phys. Rev. Lett. 123, 087202 (2019).
DOI: 10.1103/PhysRevLett.123.087202
Media Contact
More Information:
http://www.nanoscience.deAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Thermodynamics-Inspired Laser Beam Shaping Sparks a Ray of Hope
Inspired by ideas from thermodynamics, researchers at the University of Rostock and the University of Southern California have developed a new method to efficiently shape and combine high-energy laser beams….
A Breath of Fresh Air: Advanced Quantum Calculations Enable COF-999 CO₂ Adsorption
Quantum chemical calculations at HU enable the development of new porous materials that are characterized by a high absorption capacity for CO2 Climate experts agree: To overcome the climate crisis,…
Why Global Droughts Tied to Climate Change Have Left Us Feeling Under the Weather
A study led by the Swiss Federal Institute for Forest, Snow and Landscape Research WSL shows that there has been a worrying increase in the number of long droughts over…