Breaking boundaries: Researchers isolate quantum coherence in classical light systems

The diagram illustrates the process of multiparticle scattering mediated by twisted paths endowed with orbital angular momentum (OAM). The number of photons in each twisted path is measured and correlated using photon-number-resolving (PNR) detectors.
Credit: Mingyuan Hong

LSU quantum researchers uncover hidden quantum behaviors within classical light, which could make quantum technologies robust.

Understanding the boundary between classical and quantum physics has long been a central question in science. While thermal light fields have traditionally been viewed as classical, the team fragmented these fields into smaller multiphoton subsystems. Surprisingly, they uncovered quantum coherence—features such as particle interference previously thought unique to quantum systems—within a classical light source.

By using a sophisticated technique involving photon-number-resolving detection and orbital angular momentum (OAM) measurements, the researchers projected a classical pseudothermal light field into isolated multiphoton subsystems. They observed two contrasting behaviors:

  1. Classical Coherence: Most subsystems behaved predictably, in line with traditional classical optics.
  2. Quantum Coherence: A smaller subset exhibited quantum interference patterns similar to phenomena seen in entangled photon systems.

“This discovery shows that even a classical system hosts hidden quantum dynamics,” said Prof. Chenglong You, the study’s lead author. “We’ve unveiled novel mechanisms to isolate quantum systems, which could lead to more robust quantum technologies.”

The ability to extract quantum behaviors from classical systems offers new opportunities for developing advanced quantum technologies. From quantum imaging to quantum-enhanced sensors, this work provides a fundamental platform for mitigating decoherence and accessing quantum properties in open systems. The findings highlight universal quantum behaviors in many-body systems with broad applications, including condensed matter physics and quantum information science. Moving forward, this platform could be instrumental for engineering scalable quantum technologies at room temperature.

The study was a collaborative effort led by researchers from Louisiana State University and Universidad Nacional Autónoma de México. It was supported by funding from the U.S. Army Research Office, the Department of Energy, the National Science Foundation and DGAPA‑UNAM.

Journal: PhotoniX
DOI: 10.1186/s43074-024-00153-4
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Isolating the classical and quantum coherence of a multiphoton system
Article Publication Date: 27-Nov-2024
COI Statement: No COI

Media Contact

Liwei Zhu
Chinese Society for Optical Engineering
zhuliwei@csoe.org.cn

Expert Contact

Chenglong You
Quantum Photonics Laboratory, Department of Physics & Astronomy
cyou2@lsu.edu

Media Contact

Liwei Zhu
Chinese Society for Optical Engineering

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Illustration of the thermodynamics-inspired laser beam shaping process in optical thermodynamics research.

Thermodynamics-Inspired Laser Beam Shaping Sparks a Ray of Hope

Inspired by ideas from thermodynamics, researchers at the University of Rostock and the University of Southern California have developed a new method to efficiently shape and combine high-energy laser beams….

Covalent Organic Framework COF-999 structure for CO2 absorption

A Breath of Fresh Air: Advanced Quantum Calculations Enable COF-999 CO₂ Adsorption

Quantum chemical calculations at HU enable the development of new porous materials that are characterized by a high absorption capacity for CO2 Climate experts agree: To overcome the climate crisis,…

Satellite imagery showing vegetation loss due to multi-year droughts

Why Global Droughts Tied to Climate Change Have Left Us Feeling Under the Weather

A study led by the Swiss Federal Institute for Forest, Snow and Landscape Research WSL shows that there has been a worrying increase in the number of long droughts over…