Black Holes Grow Big by Eating Stars

New research by astronomers at the University of Utah and the Harvard-Smithsonian Center for Astrophysics (CfA) shows that supermassive black holes can grow big by ripping apart double-star systems and swallowing one of the stars.

“Black holes are very efficient eating machines,” said Scott Kenyon of the CfA. “They can double their mass in less than a billion years. That may seem long by human standards, but over the history of the Galaxy it's pretty fast.”

“I believe this has got to be the dominant method for growing supermassive black holes,” added lead author Benjamin Bromley of the University of Utah. The study was published in the April 2 online edition of The Astrophysical Journal Letters.

Their work follows up on the 2005 discovery, by a team of CfA astronomers led by Warren Brown, of hypervelocity stars – stars that were flung out of the galactic center by gravitational forces and are traveling fast enough to escape the Milky Way.

Hypervelocity stars originate from a binary star system that wanders too close to the Milky Way's central black hole. Tidal forces capture one star and eject the other. The star that is captured into orbit around the black hole later becomes fodder for the galactic monster.

“We put the numbers together for observed hypervelocity stars and other evidence, and found that the rate of binary encounters [with our galaxy's supermassive black hole] would mean most of the mass of the galaxy's black hole came from binary stars,” Bromley says. “We estimated these interactions for supermassive black holes in other galaxies and found that they too can grow to billions of solar masses in this way.”

As many as half of all stars are in binary pairs, so they are plentiful in the Milky Way and other galaxies.

The new study looked at each step in the process of a supermassive black hole eating binary stars, and calculated what would be required for the process to match observations. Their simulations accurately predicted the rate at which hypervelocity stars are produced (one every 1,000 to 100,000 years). The theory also fit the rate of “tidal disruption events” observed in other galaxies, which happen when stars are shredded and pulled into supermassive black holes.

Their theory shows that the Milky Way's supermassive black hole has doubled to quadrupled in mass during the past 5 billion to 10 billion years by eating stars.

“When we look at observations of how stars are accumulating in our galactic center, it's clear that much of the mass of the black hole likely came from binary stars that were torn apart,” said Bromley.

This release is being issued jointly with the University of Utah.
Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Lee Siegel, Univ. of Utah
801-581-8993
lee.siegel@utah.edu

Media Contact

Christine Pulliam EurekAlert!

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Colloidal quantum dot light emitters go broadband in the infrared

Broadband light emission in the infrared has proven to be of paramount importance for a large range of applications that include food quality and product/process monitoring, recycling, environmental sensing and…

Coral’s resilience to warming may depend on iron

Limited access to iron at high temperatures impairs growth and function of microalgae that live within coral cells. How well corals respond to climate change could depend in part on…

The most sensitive and fastest graphene microwave bolometer

Bolometers are devices that measure the power of incident electromagnetic radiation thru the heating of materials, which exhibit a temperature-electric resistance dependence. These instruments are among the most sensitive detectors…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close