Achieving UV nonlinearity with a wide bandgap semiconductor waveguide

Schematic of AlInGaN polariton waveguide structure.
Credit: Dr Paul Walker, University of Sheffield

The field of ultrafast nonlinear photonics has now become the focus of numerous studies, as it enables a host of applications in advanced on-chip spectroscopy and information processing. The latter in particular requires a strongly intensity-dependent optical refractive index that can modulate optical pulses faster than even picosecond timescales and on sub-millimeter scales suitable for integrated photonics.

Despite the tremendous progress made in this field, there is currently no platform providing such features for the ultraviolet (UV) spectral range, which is where broadband spectra generated by nonlinear modulation can be used for new on-chip ultrafast chemical and biochemical spectroscopy devices.

Now, an international team of scientists including EPFL have achieved giant nonlinearity of UV hybrid light-matter states (“exciton-polaritons”) up to room temperature in a waveguide made of AlInGaN, a wide bandgap semiconductor material behind the solid-state lighting technology (e.g. white LEDs) and blue laser diodes.

Published in Nature Communications, the study is a collaboration between the University of Sheffield, ITMO Saint Petersburg, Chalmers University of Technology, the University of Iceland, and the LASPE at EPFL’s Institute of Physics of the School of Basic Sciences.

The scientists used a compact 100 ?m-long device, to measure an ultrafast nonlinear spectral broadening of UV pulses with a nonlinearity 1000 times larger than that observed in common UV nonlinear materials, which is comparable to non-UV polariton devices.

Using AlInGaN is a significant step toward a new generation of integrated UV nonlinear light sources for advanced spectroscopy and measurement. “The AlInGaN system is a highly robust and mature semiconductor platform that shows strong excitonic optical transitions up to room temperature in the UV spectral range,” says EPFL’s Raphaël Butté, who worked on the study.

###

The authors state: “The nonlinear exciton interactions in our system are comparable to those in other polariton material systems, such as GaAs and perovskites, which, however, do not simultaneously operate in the UV and up to room temperature.”

Reference

D. M. Di Paola, P. M. Walker , R. P. A. Emmanuele, A. V. Yulin, J. Ciers, Z. Zaidi, J.-F. Carlin, N. Grandjean, I. Shelykh, M. S. Skolnick, R. Butté, D. N. Krizhanovskii. Ultrafast-nonlinear ultraviolet pulse modulation in an AlInGaN polariton waveguide operating up to room temperature. Nature Communications 09 June 2021. DOI: 10.1038/s41467-021-23635-6

Media Contact

Nik Papageorgiou
n.papageorgiou@epfl.ch
41-216-932-105

 @EPFL_en

http://www.epfl.ch/index.en.html 

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-23635-6

Media Contact

Nik Papageorgiou
Ecole Polytechnique Fédérale de Lausanne

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

World’s smallest molecular machine

… reversible sliding motion in ammonium-linked ferrocene. Researchers stabilized ferrocene molecules on a flat substrate for the first time, creating an electronically controllable sliding molecular machine. Artificial molecular machines, nanoscale…

Towards the control of chemical reactions

Overcoming one of the challenges of quantum mechanics: A major result in quantum mechanics has been achieved: for the first time, the temporal evolution of a quantum system has been…

Planets form through domino effect

New radio astronomy observations of a planetary system in the process of forming show that once the first planets form close to the central star, these planets can help shepherd…