Black holes are messy eaters

Carbon monoxide (CO; indicating the presence of medium-density molecular gas) is shown in red; atomic carbon (C; indicating the presence of atomic gas) in blue; hydrogen cyanide (HCN; indicating the presence of high density molecular gas) in green; and the hydrogen recombination line (H36α; indicating the presence of ionized gas) in pink. The size of the central dense gas disk (green) is approximately 6 light-years. The plasma outflow travels almost perpendicular to the disk.
Credit: ALMA (ESO/NAOJ/NRAO), T. Izumi et al.

New observations down to light-year scale of the gas flows around a supermassive black hole have successfully detected dense gas inflows and shown that only a small portion (about 3 percent) of the gas flowing towards the black hole is eaten by the black hole. The remainder is ejected and recycled back into the host galaxy.

Not all of the matter which falls towards a black hole is absorbed, some of it is ejected as outflows. But the ratio of the matter that the black hole “eats,” and the amount “dropped” has been difficult to measure.

An international research team led by Takuma Izumi, an assistant professor at the National Astronomical Observatory of Japan, used the Atacama Large Millimeter/submillimeter Array (ALMA) to observe the supermassive black hole in the Circinus Galaxy, located 14 million light-years away in the direction of the constellation Circinus. This black hole is known to be actively feeding.

Thanks to ALMA’s high resolution, the team was the first in the world to measure the amount of inflow and outflow down to a scale of a few light-years around the black hole. By measuring the flows of gasses in different states (molecular, atomic, and plasma) the team was able to determine the overall efficiency of black hole feeding, and found that it was only about 3 precent. The team also confirmed that gravitational instability is driving the inflow. Analysis also showed that the bulk of the expelled outflows are not fast enough to escape the galaxy and be lost. They are recycled back into the circumnuclear regions around the black hole, and start to slowly fall towards the black hole again.

Journal: Science
DOI: 10.1126/science.adf0569
Method of Research: Observational study
Subject of Research: Not applicable
Article Title: Supermassive black hole feeding and feedback observed on sub-parsec scales
Article Publication Date: 3-Nov-2023

Media Contact

Naoko Inoue
NAOJ, NINS
naoko.inoue@nao.ac.jp

Media Contact

Naoko Inoue
NAOJ, NINS

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Faster, more energy-efficient way to manufacture an industrially important chemical

Zirconium combined with silicon nitride enhances the conversion of propane — present in natural gas — needed to create in-demand plastic, polypropylene. Polypropylene is a common type of plastic found…

Energy planning in Ghana as a role model for the world

Improving the resilience of energy systems in the Global South. What criteria should we use to better plan for resilient energy systems? How do socio-economic, technical and climate change related…

Artificial blood vessels could improve heart bypass outcomes

Artificial blood vessels could improve heart bypass outcomes. 3D-printed blood vessels, which closely mimic the properties of human veins, could transform the treatment of cardiovascular diseases. Strong, flexible, gel-like tubes…

Partners & Sponsors