Like a snail through the intestinal canal

The intestines are an extremely difficult area to navigate through with a medical device. Yet, many people need to have intestinal examinations done to determine if, for example, they have intestinal cancer. The medical device currently used for this is the colonscope, a long, thin and flexible tube that causes patients great discomfort and pain.

For this reason, researchers have been trying to develop alternative medical devices, such as, for example, a small robot that moves independently through the intestinal tract. There is a layer of slime, called mucus, on the inside of the large intestine (colon). The robots, as they move forward under their own power, ignore this layer of mucus and try, if possible, to suck or grab on to the intestinal wall, which results in the walls being stretched and the patient feeling pain and discomfort.

A better method, according to TU Delft researcher Dimitra Dodou, is in fact to use this layer of mucus and allow the robot to imitate the forward movement of a snail. A snail leaves a trail of slime behind it on the ground. This slimy material works simultaneously as a lubricant for gliding on and as a glue which the slug can grip hold of.

An intestinal robot should also have a similar layer to use. To achieve this, an adhesive layer is added to the mucus-like properties, which allows the device to be stuck to the layer of mucus. The ability to be attached to a surface covered with lubricant is a great technological challenge, because most adhesives normally only work on 'clean' surfaces. The researchers discovered a group of polymers, so-called muco-adhesives, that are suitable for this. Dodou used a pig's intestine to evaluate how this material worked. Her findings revealed that muco-adhesives in the form of films provided by far the highest degree of friction.

Despite this, there is nevertheless no possibility of movement. A snail uses the exertions of pressure to change the characteristics of the middle layer, and thus lower the degree of friction, in order to move. In the intestine, however, pressure cannot be exerted, because this would cause the intestine to become deformed. The solution then is found in using smaller and larger surfaces that slide over each other. If a large surface coated with muco-adhesive remains still, and a relatively small surface coated with muco-adhesive begins moving in relation to the larger surface, the smaller surface has less freedom of movement. One by one the small 'hands' of the robot move forward. After this, the entire robot can be slide forward incrementally, whereupon the process of small surfaces shifting begins anew.

Additional experiments found that it is not only the size of the film surfaces, but also their shapes, which influence the degree of friction generated. It's remarkable that the degree of friction increases when the surface size decreases, as a result of holes being made in the structure of the film. It is therefore possible to influence the degree of friction by creating holes in the muco-adhesive or indeed by closing the holes.

Moreover, by selecting different shapes, which owing to their compact size can achieve high degrees of friction, the device can be made smaller.

The researchers are currently building a prototype that will be tested in living pigs. We must however wait a while longer until a fully developed medical device is available.

Media Contact

Maarten van der Sanden alfa

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors