New discovery can help detect brain tumors

Fluorine-18-labelled folate PET/CT 3D fusion image of a rat subject with a glioma visible in the central region of the brain.
Credit: Maxwell Miner

Folate-based radiopharmaceuticals can be used in positron emission tomography (PET) imaging to detect folate receptors in brain tumours. The discovery of folate receptors and their exploitation potential with respect to brain tumours is a new and significant finding in the field.

The discovery is related to gliomas, which are a group of serious brain tumours. Researchers discovered that brain tumours contain increased amount of folate receptor expression relative to adjacent brain tissue. This phenomenon has been observed in both experimental models and human tumour samples.

”Prior to this discovery, the presence of folate receptors and their increased presence in gliomas had not been recognised, and thus they have not yet been used for imaging nor treatment purposes”, summarises Doctoral Researcher Maxwell Miner from the Turku PET Centre at the University of Turku in Finland.

According to research group leader and InFLAMES PI Professor Anne Roivainen this presents an especially exciting target for potential future treatments.

“Our results show an average of 100-fold increase in folate-based radiopharmaceutical accumulation in glioma tissue versus that of adjacent healthy brain tissue”, says Professor Roivainen.

Urgent need for new chemotherapy treatments

Glioma brain tumours originate from the non-neuronal glial cells in the brain, which outnumber neurons in quantity. Gliomas comprise numerous subgroups, with even a high degree of morphological and receptor variability within a single cancerous lesion.

This exceptional cellular heterogeneity can make treatment difficult. There is an urgent need for new chemotherapy treatments particularly for the most malignant brain cancers as they often grow in an infiltrative web-like manner on their periphery making distinguishing the boundaries between glioma and non-glioma difficult. The researchers at the Turku PET Centre hope that this recent discovery will lead to further investigation into folate-targeted brain tumour detection and treatment.

The results were obtained in a multidisciplinary joint project involving researchers from the Turku PET Centre at the University of Turku, Turku University Hospital, InFLAMES Research Flagship, and collaborators from Purdue University, USA. The glioma samples were obtained from the Auria Biobank.

Journal: Frontiers in Immunology
DOI: 10.3389/fimmu.2023.1145473
Article Title: High folate receptor expression in gliomas can be detected in vivo using folate-based positron emission tomography with high tumor-to-brain uptake ratio divulging potential future targeting possibilities
Article Publication Date: 18-May-2023

Media Contact

Tuomas Koivula
University of Turku
communications@utu.fi

Media Contact

Tuomas Koivula
University of Turku

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Cosmic cartography – mapping the gravitational wave background

The most sensitive map of the gravitational wave sky to date was produced by an international collaboration of researchers including numerous scientists from the Max Planck Institute for Radio Astronomy…

New organoid with all key pancreas cells

Researchers from the Organoid group (previously Clevers group) at the Hubrecht Institute have developed a new organoid that mimics the human fetal pancreas, offering a clearer view of its early development….

Unlocking the potential of nickel

New study reveals how to use single atoms to turn CO2 into valuable chemical resources. Nickel and nitrogen co-doped carbon (Ni-N-C) catalysts have shown exceptional performance in converting CO2 into…