UV sphere makes applying paint quick and easy

The inside of the approximate UV sphere made from triangles with four shift sticks. The upper section of the pilot system can be opened for loading and unloading. Fraunhofer IPA/Rainer Bez

There are two options when it comes to curing painted components: Either you can dry them with warmth, which takes a relatively long time and requires a lot of energy, or you can irradiate them with UV light. However, there are limitations to the usual UV curing methods for industrial applications if the component has a complex shape.

In this case, the light source or the part must be readjusted several times, and even then not all surfaces are optimally reached. A consortium of companies and institutes have now developed a system that makes this redundant, works quickly and saves energy.

It is based on the following principle: if you beam light into the inside of a sphere, it is almost perfectly scattered by the multiple reflections off the walls. If the part is placed inside a sphere, all of its surfaces receive the same amount of UV irradiation, without the effort of adjusting the part.

Sphere made from 20 triangles

The engineers did not use a perfect sphere, instead using an approximate spherical shape made up of 20 flat triangles, which is easier to manufacture. The internal surface is made from Teflon, which reflects over 80% of the radiation and is also dirt-repellant and UV-resistant.

The UV light sources weren’t the conventional mercury vapor lamps either; they were innovative high-performance LED spotlights that use very little energy, have short warm up times, can be turned off quickly and have a long useful life. Alfred Feilen, CEO at Easytec confirms: »The UV LED lamps have particularly advantageous properties for integration into the UV sphere. The small dimensions, high optical output density and quick cyclability makes them the ideal radiation source for this application.«

Furthermore, a new paint was used that was ideal for the system. However, conventional paints can be used too, even those that are cured without inert gas.

Cures in seconds

The prototype that has now been developed meets all expectations. Rainer Röck, the inventor and patent holder, is delighted: »We even placed 3D components that have several layers of paint in the patented UV sphere, turned on the high-performance UV LEDs and in the space of a few seconds of UV pulsing, the paint layer cured evenly.

And that goes for components with complex shapes, indentations and holes too. The great thing about this is that neither the UV rays nor the components need to be moved or adjusted, regardless of the size and shape of the components.«

Curing times are reduced to just a few seconds, which now enables short cycle times. Energy consumption is decreased to about a twentieth of the amount used for thermal drying processes. As the paint’s solvent content is considerably lower (and in some cases is actually zero), waste air does not need to be removed by suction. Moreover, the innovative system requires significantly less production area than standard systems.

On top of this, the system is scalable, so it can be manufactured to any size and can also be integrated into existing systems. The Head of Functional Coatings at Ritzi Lakiertechnik GmbH, Hartmut Jundt is pleased: »As a user, I am particularly delighted that parts from any structure can be dried quickly and effectively without programming work. Replacing parts has become a lot less daunting!«

Profile
The »UV sphere pulse system for 3D paint curing« project was supported by the Federal Ministry for Economic Affairs and Energy and spanned three years. In addition to the Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Durst Lackier- und Trocknungsanlagen GmbH, Easytec GmbH, Institute of Industrial Manufacturing and Management IFF of the University of Stuttgart, Opsytec Dr. Gröbel GmbH and Ritzi Lackiertechnik GmbH were all also involved in the project.

Press communication
Jörg-Dieter Walz | Telephone +49 711 970-1667 | presse@ipa.fraunhofer.de

Specialist contact
Jörg Schieweck | Telephone +49 711 970-1874 | joerg.schieweck@ipa.fraunhofer.de

http://www.durst-lackieranlagen.de/de/
http://www.easytecgmbh.de
http://www.iff.uni-stuttgart.de/
http://www.opsytec.de/
http://www.ritzi-lackiertechnik.de/

Media Contact

Jörg Walz Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Scientists achieve higher precision weak force measurement between protons, neutrons

Through a one-of-a-kind experiment at the Department of Energy’s Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak…

High-performance single-atom catalysts for high-temperature fuel cells

Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate…

New method allows precise gene control by light

A novel optical switch makes it possible to precisely control the lifespan of genetic “copies”. These are used by the cell as building instructions for the production of proteins. The…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close