Mimicking the human body with carbon black polymers

Metal detectors have become so commonplace that you might think we know all we need to about them. However, the law enforcement community must continually update performance standards for metal detectors to ensure that new products purchased in the marketplace operate at specified minimum levels. Further-more, they must know if exposure to the magnetic fields generated by metal detectors affects the functioning of personal medical electronic devices (such as cardiac defibrillators, infusion pumps, spinal cord stimulators, etc.)

With funding from the U.S. Department of Justice’s National Institute of Justice, researchers at the National Institute of Standards and Technology (NIST) develop and revise such standards as new technologies become available. One project concentrated on finding better materials to mimic the human body’s response to the magnetic fields generated by metal detectors. By using such biologic “phantoms,” researchers can create more realistic testing scenarios without subjecting medical patients to exposure.

Since about two-thirds of the human body is made of water, conventional phantoms utilize liquids and salts. However, the liquids are subject to evaporation that changes both the salinity and the electrical conductivity, making it difficult to model human body components consistently.

The NIST researchers came up with an improved phantom material, a polymer mixed with carbon powder. By varying the amount of carbon powder used, the materials can mimic blood, bone, fat and skin. The researchers chose carbon black–a fine powder made almost entirely of elemental carbon–because of its electrical conductivity and low cost. The impregnated polymers can be formed in a variety of shapes and sizes. A recent NIST publication* discusses the material and its low-frequency electrical properties in detail.

* NIST Technical Note 1529, Carbon-Loaded Polymer Composites Used as Human Phantoms: Theoretical Models for Predicting Low-Frequency Dielectric Behavior. R.G. Geyer, J. Baker-Jarvis, M.D. Janezic, and R.K. Kaiser.

Media Contact

Gail Porter EurekAlert!

Weitere Informationen:

http://www.nist.gov/

Alle Nachrichten aus der Kategorie: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Scientists achieve higher precision weak force measurement between protons, neutrons

Through a one-of-a-kind experiment at the Department of Energy’s Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak…

High-performance single-atom catalysts for high-temperature fuel cells

Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate…

New method allows precise gene control by light

A novel optical switch makes it possible to precisely control the lifespan of genetic “copies”. These are used by the cell as building instructions for the production of proteins. The…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close