Mimicking the human body with carbon black polymers
Metal detectors have become so commonplace that you might think we know all we need to about them. However, the law enforcement community must continually update performance standards for metal detectors to ensure that new products purchased in the marketplace operate at specified minimum levels. Further-more, they must know if exposure to the magnetic fields generated by metal detectors affects the functioning of personal medical electronic devices (such as cardiac defibrillators, infusion pumps, spinal cord stimulators, etc.)
With funding from the U.S. Department of Justices National Institute of Justice, researchers at the National Institute of Standards and Technology (NIST) develop and revise such standards as new technologies become available. One project concentrated on finding better materials to mimic the human bodys response to the magnetic fields generated by metal detectors. By using such biologic “phantoms,” researchers can create more realistic testing scenarios without subjecting medical patients to exposure.
Since about two-thirds of the human body is made of water, conventional phantoms utilize liquids and salts. However, the liquids are subject to evaporation that changes both the salinity and the electrical conductivity, making it difficult to model human body components consistently.
The NIST researchers came up with an improved phantom material, a polymer mixed with carbon powder. By varying the amount of carbon powder used, the materials can mimic blood, bone, fat and skin. The researchers chose carbon black–a fine powder made almost entirely of elemental carbon–because of its electrical conductivity and low cost. The impregnated polymers can be formed in a variety of shapes and sizes. A recent NIST publication* discusses the material and its low-frequency electrical properties in detail.
* NIST Technical Note 1529, Carbon-Loaded Polymer Composites Used as Human Phantoms: Theoretical Models for Predicting Low-Frequency Dielectric Behavior. R.G. Geyer, J. Baker-Jarvis, M.D. Janezic, and R.K. Kaiser.
Media Contact
More Information:
http://www.nist.gov/All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
Glowing approach could aid carpal tunnel-related surgery
Fluorescein angiography capable of assessing neural blood flow in chronic nerve compression neuropathy. In modern office life, avoiding the onset of carpal tunnel syndrome might be a daily struggle. The…
A stiff material that stops vibrations and noise
Materials researchers have created a new composite material that combines two incompatible properties: stiff yet with a high damping capacity. In brief Oscillations and vibrations damage machines and buildings, while…
The first ever visualization of photoexcited charges
…traveling across the interface of two semiconductor materials. UC Santa Barbara researchers have achieved the first-ever “movie” of electric charges traveling across the interface of two different semiconductor materials. Using…