Process developed for solvent-free acrylic fiber and cheap, fast carbon fibers

Carbon-fiber reinforced polymer matrix composite materials are strong without being brittle and retain their integrity over a wide temperature range while being impervious to most environments. While the materials’ qualities make them important to the aerospace industry, present processing technology makes carbon fiber too expensive for broader use, such as in the automotive industry.

Chemistry and chemical engineering researchers at Virginia Tech and Clemson University have been working for three years with funding from the U.S. Department of Energy to develop new ways to make cheaper, more environmentally friendly carbon-fiber precursor materials. The researchers have made a discovery that makes it possible to create the carbon fiber precursor materials without solvents and potentially to process them into carbon fibers more quickly and cheaply than can be done presently.

Members of the Materials Research Institute (MRI) at Virginia Tech will present their work at the 226th American Chemical Society (ACS) national meeting in New York City Sept. 7-11.

The usual first step in carbon fiber production is the creation of acrylic fibers. These fibers are heated for eight to 10 hours at 200 degrees C, and then at progressively higher temperatures, to produce carbon fibers. Presently, acrylic fibers are spun in solution. “We have developed an acrylic fiber that can be spun from the melt – from 100 percent solids without solvents,” says James McGrath, MRI director.

In addition, the researchers have added a molecular component to the acrylic fiber that reacts with ultraviolet (UV) light. “It’s expensive to process material for 10 plus hours at very high temperatures. We think we can cut that to one or two hours as a result of including the photocrosslinkable group,” says McGrath.

The process needs to be scaled up from the successful laboratory results, he says.

The paper, “Photocrosslinkable acrylonitrile terpolymers as carbon fiber precursors” (Poly 244) will be presented Tuesday, Sept. 9, at 9:30 a.m. in the New York Hilton Sutton North room. It is the first presentation on the synthesis of acrylic fibers with a photo-sensitive monomer. Authors of this paper are MRI post-doctoral associates Thekkekara Mukundan and Vinayak A. Bhanu, chemistry Ph.D. student Kent Wiles, chemical engineering Ph.D. student Michael Bortner, and professors D.G. Baird of chemical engineer and McGrath of chemistry, all at Virginia Tech. Research colleagues from Clemson are chemical engineering professors Dan Edie and Amod Ogale and their students.

Contact for more information:

Dr. James McGrath, 540-231-5976, jmcgrath@vt.edu
Dr. Donald Baird, 540-231-5998, dbaird@vt.edu
Dr. Mukundan, tmukunda@vt.edu

PR CONTACT:
Susan Trulove, 540 231-5646, STrulove@vt.edu
Researcher: James McGrath, 540-231-5976, jmcgrath@vt.edu.

Media Contact

Laurie Good EurekAlert!

More Information:

http://www.technews.vt.edu/

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Wildfire danger to increase due to climate change

WSL Institute for Snow and Avalanche Research (SLF) researchers expect an elevated wildfire danger in the Alpine Foreland from 2040 onwards due to changing meteorological conditions. The danger currently remains…

Advanced Brain Science Without Coding Expertise

Researchers at Helmholtz Munich and the LMU University Hospital Munich introduce DELiVR, offering a new AI-based approach to the complex task of brain cell mapping. The deep learning tool democratizes…

Transparent emissive microdisplays

… for ultra-light and compact augmented reality systems. As part of the HOT project (High-performance transparent and flexible microelectronics for photonic and optical applications), scientists from the Fraunhofer Institute for…

Partners & Sponsors