Proteins imaged in graphene liquid cell have higher radiation tolerance

Schematic representation

Electron microscopy is one of the main methods used to examine protein structure. Studying these structures is of key importance to elucidate their function feeding fundamental information into a number of fields such as structural biology, cell biology, cancer research, and other biomedical fields. It also enhances the understanding of biomineralization.

A new option for imaging proteins is liquid-phase electron microscopy (LPEM), which is capable of imaging native (unstained) protein structure and other samples such as nanomaterials or cells in liquid.

This technology was developed over the past fifteen years. Until recently, it debated whether the radiation tolerance of liquid samples would be better or worse compared to amorphous ice.

In their recent publication, Sercan Keskin and Niels de Jonge from the INM-Leibniz Institute for New Materials now demonstrate, that the radiation tolerance is increased by an order of magnitude compared to a sample in ice.

This result was achieved by preparing a microtubule sample in a graphene liquid cell. Essential was to use a low as possible rate at which the electron beam irradiation was applied.

Traditionally, samples were fixed, stained with a metal to enhance their contrast, subsequently dried, embedded in plastic, cut in thin sections, and then imaged in the vacuum environment required for electron microscopy.

Cryo electron microscopy overcomes the drawbacks associated with this sample preparation and provides the means to study proteins in a close to native hydrated state by preparing them in amorphous ice.

However, a key imitating is the high sensitivity of the samples to electron beam irradiation, so that statistical noise in the image prevents high resolution and many ten thousand noisy images of identical structures need to be imaged in order to resolve the structure.

Prof. Dr. Niels de Jonge
Head Innovative Electron Microscopy
Phone: +49681-9300-313
niels.dejonge@leibniz-inm.de

Keskin, S. & de Jonge, N. Reduced radiation damage in transmission electron microscopy of proteins in graphene liquid cells. Nano Lett., early online, 2018. DOI: 10.1021/acs.nanolett.8b02490

Media Contact

Dr. Carola Jung idw - Informationsdienst Wissenschaft

More Information:

http://www.inm-gmbh.de

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Chemotherapy fights cancer, but can also damage the muscles.

Sorafenib’s Impact: Understanding Muscle Wasting from Chemotherapy

Research team clarifies molecular basis for cachexia Chemotherapeutic agents are often used to treat cancer. They combat tumour growth, but also have a number of undesirable side effects. One of…

Research led by Jia Zhou in the Hibbs Lab at UC San Diego has mapped the structures of human brain receptors for the neurotransmitter GABA. The team obtained samples from epilepsy patients undergoing surgery, and used cryo-EM to understand how different protein subunits can assemble in many ways. The study has implications for understanding signaling in the brain and for treating diseases like epilepsy.

Cracking the GABAA Code: Novel Insights into Brain Receptor Structure

Advanced scientific instruments allow scientists to build a map of brain receptors, opening the door to possible novel ways to treat epilepsy and mental disorders Certain proteins found in the…

Patrick Heighway from Oxford University–winner of the European XFEL Young Scientist Award 2025.

European XFEL Award Felicitates Oxford’s Patrick Heighway

His work helps to pave the way to major contributions to improvements to the facility, and to data analysis and interpretation by means of theory or modelling. Three excellent posters…