Materials Sciences

A scanning electron microscope image of a bilayer titanium dioxide metasurface. Credit: Capasso group / Harvard SEAS
Materials Sciences

Exploring Advances in Metasurfaces Technology

Bilayer device can control many forms of polarized light Almost a decade ago, Harvard engineers unveiled the world’s first visible-spectrum metasurfaces – ultra-thin, flat devices patterned with nanoscale structures that could precisely control the behavior of light. A powerful alternative to traditional, bulky optical components, metasurfaces today enable compact, lightweight, multifunctional applications ranging from imaging systems and augmented reality to spectroscopy and communications. Now, researchers in the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) are doubling down, literally, on metasurface…

A schematic illustration of the experimental setup shows a scanning magnetic microscope positioned above two different samples. One sample exhibits only surface superconductivity, while the other displays conventional superconductivity. Credit: Ori Lerman
Materials Sciences

Hidden Superconducting State in NbSe₂: New Insights Unveiled

Researchers have discovered an unexpected superconducting transition in extremely thin films of niobium diselenide (NbSe₂). Published in Nature Communications, they found that when these films become thinner than six atomic layers, superconductivity no longer spreads evenly throughout the material, but instead becomes confined to its surface. This discovery challenges previous assumptions and could have important implications for understanding superconductivity and developing advanced quantum technologies. Researchers at the Hebrew University of Jerusalem have made a surprising discovery about how superconductivity behaves…

The magnetic microstructure of the nickel-iron alloy leads to a compression of the field lines in the centre. Credit: A. Palau/ICMAB
Materials Sciences

BESSY II Unveils Magnetic Microflowers for Enhanced Fields

A metamaterial with potential applications in sensor technology A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of ‘petals’. This magnetic metamaterial developed by Dr Anna Palau’s group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY…

Organic solar cells. Image Credit: Lunghammer - TU Graz
Materials Sciences

Graz University Team Unravels Heat Conduction in Complex Materials

Using machine learning workflows developed in-house, the researchers were able to establish that heat conduction is much more intricate than previously thought. Findings offer potential for developing specific materials. Complex materials such as organic semiconductors or the microporous metal-organic frameworks known as MOFs are already being used for numerous applications such as OLED displays, solar cells, gas storage and water extraction. Nevertheless, they still harbour a few secrets. One of these has so far been a detailed understanding of how…

Confocal microscopy images: Taken by Samarpita Sen, The Gurdon Institute, University of Cambridge. Rendered in this form by Rituparno Chowdhury. Image Credit: Samarpita Sen/Rituparno Chowdhury
Materials Sciences

Twisted Light: A New Power Source for Next-Gen Electronics

Researchers have advanced a decades-old challenge in the field of organic semiconductors, opening new possibilities for the future of electronics. The researchers, led by the University of Cambridge and the Eindhoven University of Technology, have created an organic semiconductor that forces electrons to move in a spiral pattern, which could improve the efficiency of OLED displays in television and smartphone screens, or power next-generation computing technologies such as spintronics and quantum computing. The semiconductor they developed emits circularly polarised light—meaning…

A new paper from the lab of Asst. Prof. Chibueze Amanchukwu (left) of the UChicago Pritzker School of Molecular Engineering, including first author Priyadarshini Mirmira (right), demonstrates a new technique for building inorganic and polymer electrolytes at the same time and in the same vessel. (Photo by John Zich). Image Credit: UChicago Pritzker School of Molecular Engineering / John Zich
Materials Sciences

New One-Pot Technique Enhances Material Synthesis Efficiency

UChicago Pritzker School of Molecular Engineering research created inorganic and polymer battery electrolytes simultaneously, with potential applications across chemistry Creating battery electrolytes – the component that carries the charged particles back and forth between a battery’s two terminals – has always been a tradeoff. Solid-state inorganic electrolytes move the particles extremely efficiently, but being solid and inorganic means they’re also brittle, hard to work with and difficult to connect seamlessly with the terminals. Polymer electrolytes are a dream to work…

The lowest energy and the dynamical unstable configurations, as well as their corresponding phonon dispersion relationships. Image Credit: WANG XIanlong
Materials Sciences

Phosphorus Doping Enhances Stability of Polymer Nitrogen

Using first-principles calculations, a research group led by Prof. WANG Xianlong from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, found that phosphorus doping is an effective way to achieve high-energy polymeric nitrogen with black-phosphorus structure (BP-N) stable at ambient pressure. The research results were published in Matter and Radiation at Extremes. Cubic gauche nitrogen with diamond-like structure and BP-N with black phosphorus structure, represented by polymeric all-nitrogen materials, are a class of high-energy density materials composed…

Precisely tailored Zn1−xCdxSe/ZnSe shells with a continuous gradient structure were synthesized using the facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy. This process enables the formation of large-particle alloyed red CdZnSe/Zn1−xCdxSe/ZnSe/ZnS/CdZnS QDs. The obtained QDs exhibit an ultra-narrow FWHM of 17.1 nm and a near-unity PLQY, resulting in a record EQE of 38.2% and an exceptional T95 lifetime of over 21,000 hours (tested at 1000 cd m–2) for red QLEDs.
Materials Sciences

Quantum Dot Technology: Enhanced Color and Longevity in Displays

Quantum dot light-emitting diodes (QLEDs) have made rapid progress in luminescence, efficiency, and stability, making them promising candidates for displays and solid-state lighting applications. However, achieving high-performance QLEDs with high color purity remains a persistent challenge, particularly red QLEDs, thus limiting the popularity of ultra-high definition devices. Recently, Soochow University, in collaboration with Macau University of Science and Technology and other research institutes, reported a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of high-quality,…

Combining ultra-thin molybdenum disulfide with flexible strontium titanate nanomembranes creates advanced materials that can be used in a variety of low-power, high-performance electronic and sensing devices. Image Credit: Jennifer M. McCann/Penn State
Materials Sciences

Inception of Low-Power Electronics with New Material Property

Scientists at Penn State have harnessed a unique property called incipient ferroelectricity to create a new type of computer memory that could revolutionize how electronic devices work, such as using much less energy and operating in extreme environments like outer space. They published their work, which focuses on multifunctional two-dimensional field-effect transistors (FETs), in Nature Communications. FETs are advanced electronic devices that use ultra-thin layers of materials to control electrical signals, offering multiple functions like switching, sensing or memory in a…

New archaeological evidence suggests that ancient inhabitants of the Philippines and Island Southeast Asia had the advanced plant-working technology needed for sophisticated boat building and open-sea fishing. Image Credit: Alfred Pawlik
Materials Sciences

Ancient Technology Clues Discovered in Southeast Asia

The ancient peoples of the Philippines and of Island Southeast Asia (ISEA) may have built sophisticated boats and mastered seafaring tens of thousands of years ago—millennia before Magellan, Zheng He, and even the Polynesians. In a new paper coming out in the April 2025 issue of the Journal of Archaeological Science: Reports, Ateneo de Manila University researchers Riczar Fuentes and Alfred Pawlik challenge the widely-held contention that technological progress during the Paleolithic only emerged in Europe and Africa. They point…

Scientist wearing protective uniform and glove under working water analysis and water quality by get waste water to check case in laboratory is environment pollution problem concept
Materials Sciences

Innovative Data-Driven Single-Atom Catalysts for Water Purification

All humans need clean water to live. However, purifying water can be energy-intensive, so there is great interest in improving this process. Researchers at Tohoku University have reported a strategy using data-driven predictions coupled with precise synthesis to accelerate the development of single-atom catalysts (SACs) for more robust and efficient water purification. SACs are one of the most crucial catalysts. They play a pivotal role in enhancing efficiency in diverse applications including chemical industries, energy conversion, and environmental processes. For…

Materials Sciences

Spintronics memory innovation: A new perpendicular magnetized film

Long gone are the days where all our data could fit on a two-megabyte floppy disk. In today’s information-based society, the increasing volume of information being handled demands that we switch to memory options with the lowest power consumption and highest capacity possible. Magnetoresistive Random Access Memory (MRAM) is part of the next generation of storage devices expected to meet these needs. Researchers at the Advanced Institute for Materials Research (WPI-AIMR) have investigated a cobalt-manganese-iron alloy thin film that demonstrates…

Materials Sciences

Materials with a ‘twist’ show unexpected electronic behaviour

In the search for new materials that can enable more efficient electronics, scientists are exploring so-called 2-D materials. These are sheets of just one atom thick, that may have all kinds of interesting electronic properties. If two sheets are placed on top of each other at specific angles, this may lead to new properties such as superconductivity. University of Groningen materials scientist Antonija Grubišić-Čabo and her colleagues studied such a ‘twisted’ material and discovered that it defied theoretical predictions. Together…

Materials Sciences

Enhancing Display Manufacturing with Sustainable Simulations

How simulations help manufacturing of modern displays. Modern materials must be recyclable and sustainable. Consumer electronics is no exception, with organic light-emitting diodes (OLEDs) taking over modern televisions and portable device displays. However, the development of suitable materials – from the synthesis of molecules to the production of display components – is very time-consuming. Scientists led by Denis Andrienko of the Max Planck Institute for Polymer Research and Falk May from Display Solutions at Merck have now developed a simulation…

Materials Sciences

Discovering Neural Plasticity in Cultured Neurons

“Neurons that fire together, wire together” describes the neural plasticity seen in human brains, but neurons grown in a dish don’t seem to follow these rules. Neurons that are cultured in-vitro form random and meaningless networks that all fire together. They don’t accurately represent how a real brain would learn, so we can only draw limited conclusions from studying it. But what if we could develop in-vitro neurons that actually behaved more naturally? A research team at Tohoku University has…

AI-powered discovery of efficient perovskite solar cell materials.
Materials Sciences

AI for Better and Faster Photovoltaic Materials

The quest for sustainable energy solutions has been a major focus of scientific research for decades. Solar energy, a clean and renewable source, has emerged as a promising alternative to traditional fossil fuels. In particular, perovskite solar cells have gained significant attention due to their flexibility and sustainability. A Collaborative Approach A recent breakthrough in materials science has accelerated the discovery of novel perovskite materials. By leveraging the power of artificial intelligence (AI) and high-throughput synthesis, researchers have been able…

Feedback