New sustainable production method could advance plastics and pharmaceuticals

University of Texas engineers show off their school spirit by molding the new, sustainably produced plastic material into a Longhorn silhouette in Hal Alper's lab. Credit: Cockrell School of Engineering, The University of Texas at Austin

Led by Hal Alper, professor in the McKetta Department of Chemical Engineering in the Cockrell School of Engineering, the team's new method involves engineering the yeast Y. lipolytica to increase production of TAL, a polyketide, to levels that far exceed current bioproduction methods.

This was accomplished by rewiring metabolism in the yeast through synthetic biology and genetic engineering. Ultimately, the research team increased production capacity tenfold, enabling polyketides to be mass-produced for incorporation into a variety of new applications in industry.

Polyketides are an important class of naturally derived molecules that can be used to make many useful products such as nutritional supplements, specialty polymers, pigments and pharmaceuticals. Currently, there are more than 20 drugs derived from polyketides on the market, including immunosuppressants, statins and antimicrobials.

Up to this point, synthetic production of polyketides has been constrained by technical challenges, limiting practical applications for consumer- and industry-based needs. In particular, most technologies have limited product yields resulting in difficult chemical synthesis and poor economics. The UT Austin team's breakthrough could change that.

Using their new method, the researchers were able to purify TAL directly from a bioreactor to make a new plastic material that can be formed into a film and is seen to exhibit an orange hue and relative transparency.

“We hope to open up new product and industrial opportunities in the chemical and pharmaceutical spaces,” Alper said. “Our engineering efforts in TAL showcase that we can rewire metabolism to create renewable solutions to traditional chemical manufacturing.”

The UT Austin Office of Technology Commercialization has filed U.S. patent applications for the technology and is working to secure worldwide patents. The office is seeking commercial partners who have interest in improving the economics of polyketide production or creating new materials or products from polyketides.

“An important role for our institution, as one of the nation's leading public research universities, is to move UT Austin's research from the laboratory to useful products and services for the marketplace,” said Dan Sharp, director of the UT Austin Office of Technology Commercialization. “Research like this addresses that priority and provides society with innovative solutions that grow our economy and improve the quality of life.”

###

This work was funded by the Camille and Henry Dreyfus Foundation and the Welch Foundation.

Media Contact

Betsy Merrick
bmerrick@otc.utexas.edu
512-293-1174

 @UTAustin

http://www.utexas.edu 

Media Contact

Betsy Merrick EurekAlert!

Alle Nachrichten aus der Kategorie: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Scientists achieve higher precision weak force measurement between protons, neutrons

Through a one-of-a-kind experiment at the Department of Energy’s Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak…

High-performance single-atom catalysts for high-temperature fuel cells

Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate…

New method allows precise gene control by light

A novel optical switch makes it possible to precisely control the lifespan of genetic “copies”. These are used by the cell as building instructions for the production of proteins. The…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close