Miniature permanent magnets can be printed on a 3D printer

Miniature permanent magnets printed on a 3D printer
Credit: UrFU / Oksana Meleshchuk

They will be useful in creating electric motors for pacemakers.

Scientists from the Ural Federal University and the Ural Branch of the Russian Academy of Sciences are determining the optimal conditions for 3D printing of permanent magnets from hard magnetic compounds based on rare-earth metals. This will make it possible to start small-scale production of magnets, give them any shape during manufacturing, and create complex configurations of magnets. Such magnets are suitable for miniature electric motors and electric generators, on which pacemakers work. In addition, the technology minimizes production waste and has a shorter production cycle. A description of the method and experimental results are published at the Journal of Magnetism and Magnetic Materials.

Creating complex and small magnets is not an easy scientific and technical task, but they are in demand in various specialized applications, primarily medical ones. One of the most promising ways to create complex-shaped parts from magnetically hard materials is 3D printing. Scientists managed to determine the optimal parameters for 3D printing of permanent magnets using the selective laser sintering method. This is an additive manufacturing method in which magnetic material in the form of powder is sintered layer by layer into a three-dimensional product of a given shape based on a previously created 3D model. This technology makes it possible to change the internal properties of the magnet at almost all stages of production. For example, to change the chemical composition of the compound, the degree of spatial orientation of crystallites and crystallographic texture, and to influence the coercivity (resistance to demagnetization).

“Producing small magnets is a difficult task. Now they are created only by cutting a large magnet into pieces, because of the mechanical processing about half of the used material turns into garbage. Also, cutting introduces a lot of defects in the near-surface layer, which causes the properties of the magnet to deteriorate enormously. Additive technologies allow to avoid this and make complex magnets, for example, with one north pole and two spatially separated south poles or a magnet with five south poles and five north poles at once. Such configurations are necessary for pacemakers, where it is only possible to assemble the rotor for an electric motor from separate magnets under a microscope,” explains Dmitry Neznakhin, Associate Professor at the Department of Magnetism and Magnetic Nanomaterials and Researcher at the Section of Solid State Magnetism at UrFU.

Currently, scientists succeeded in producing thin, about one millimeter, permanent magnets whose properties are similar to those of industrially produced magnets. The base was a powder containing samarium, zirconium, iron, and titanium. The compound has suitable characteristics for permanent magnets, but traditional manufacturing methods deprive the compound of most of its properties. Therefore, the scientists decided to see if the properties could be preserved with the new technology.

“When creating permanent magnets based on these compounds using traditional methods, the properties of the finished products are far from the theoretically predicted ones. We found that when sintering a sample, adding a fusible powder from an alloy of samarium, copper, and cobalt allows the magnetic characteristics of the main magnetic powder to be retained. This alloy melts at temperatures lower than the properties of the main alloy change, which is why the final material retains its coercive force and density,” adds Dmitry Neznakhin.

At the moment, scientists are establishing the basic laws of formation of the microstructure and magnetic properties of hard magnetic materials, and determining which magnetic materials can be used to manufacture permanent magnets using the laser sintering method. This includes testing how the sintering method affects the properties of another known base for magnets – an alloy of neodymium, iron, and boron. The next stage of the work will be the production of bulk permanent magnets suitable for practical applications.


Permanent magnets remain magnetic field sources for a long time. This property is used in a wide variety of industries and devices, such as the manufacture of modern electric motors, household and computer equipment, and other appliances. Traditional methods of manufacturing permanent magnets allow only large products and usually have two poles – one north and one south.

Selective laser sintering is an additive manufacturing method that involves sintering finely dispersed powder (usually metallic) material with a laser. The laser targeting process is carried out automatically according to a previously created 3D model, which can be created in a graphic editor.

Journal: Journal of Magnetism and Magnetic Materials
DOI: 10.1016/j.jmmm.2022.169937
Article Title: Phase composition and magnetic properties of (Sm,Zr)Fe11Ti magnets produced by selective laser melting

Media Contact

Anna Marinovich
Ural Federal University
Office: 343-389-94-07
Cell: 961-770-6024

Media Contact

Anna Marinovich
Ural Federal University

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

It takes two: cooperating catalysts provide new route for utilizing formate salts

Two catalysts working in tandem enable inexpensive formate salts to perform difficult dearomative reactions, giving products potentially useful for drug development. Researchers at the Institute for Chemical Reaction Design and…

Molecule-electron-proton transfer in enzyme-photo-coupled catalytic system

The harmonious coexistence between the human society and the nature has prompted the rapid development of advanced manufacturing. Typically, green biomanufacturing, which uses renewable resources as raw materials and enzymes…

Funding backs world-first test to detect ‘insidious’ malaria infections

Research to develop and deploy a world-first diagnostic test that could accelerate malaria eradication has been bolstered with over $1.3 million in new funding from the National Health and Medical…

Partners & Sponsors