New Cotton Fabric Cleans Itself When Exposed to Ordinary Sunlight

Mingce Long and Deyong Wu say their fabric uses a coating made from a compound of titanium dioxide, the white material used in everything from white paint to foods to sunscreen lotions. Titanium dioxide breaks down dirt and kills microbes when exposed to some types of light.

It already has found uses in self-cleaning windows, kitchen and bathroom tiles, odor-free socks and other products. Self-cleaning cotton fabrics have been made in the past, the authors note, but they self-clean thoroughly only when exposed to ultraviolet rays. So they set out to develop a new cotton fabric that cleans itself when exposed to ordinary sunlight.

Their report describes cotton fabric coated with nanoparticles made from a compound of titanium dioxide and nitrogen. They show that fabric coated with the material removes an orange dye stain when exposed to sunlight. Further dispersing nanoparticles composed of silver and iodine accelerates the discoloration process. The coating remains intact after washing and drying.

The authors acknowledge funding from Donghua University and the National Natural Science Foundation of China.

“Realizing Visible-Light-Induced Self-Cleaning Property of Cotton through Coating N-TiO2 Film and Loading AgI Particles”

ACS Applied Materials & Interfaces

Media Contact

Michael Woods Newswise Science News

Weitere Informationen:

http://www.acs.org

Alle Nachrichten aus der Kategorie: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Scientists achieve higher precision weak force measurement between protons, neutrons

Through a one-of-a-kind experiment at the Department of Energy’s Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak…

High-performance single-atom catalysts for high-temperature fuel cells

Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate…

New method allows precise gene control by light

A novel optical switch makes it possible to precisely control the lifespan of genetic “copies”. These are used by the cell as building instructions for the production of proteins. The…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close