Bismuth for Bone Cement

Organic–inorganic hybrid materials, uniting the advantages of their organic and inorganic parts, are used for a wide variety of applications. However, making a homogeneous composite material is only possible if a solvent can be found in which both components are soluble.

Materials containing the metal bismuth show high radiopacity, and thus they have potential as X-ray imaging agents for computer tomography and as X-ray contrast additives in bone and dental cements, for example, to examine how well the cements fit after they are placed in the appropriate body part by an operation.

However, a major disadvantage associated with the low solubility of these inorganic bismuth compounds is phase separation due to their incompatibility with the organic matrix. Michael Mehring at the Technical University of Chemnitz and Dirk Zahn at the Friedrich Alexander University in Erlangen-Nürnberg report the investigations of their groups on highly soluble bismuth oxido clusters in the European Journal of Inorganic Chemistry.

Water-soluble hexanuclear bismuth oxido clusters were mixed with a polyacrylate organic component, which is a dispersing agent used in phosphate-free laundry detergents, to obtain a water-soluble hybrid composite material that has the potential for being used in applications such as bone cement. The solubility of the bismuth oxido cluster ensures a good dispersity in the polymer matrix.

Molecular dynamics simulations were used to demonstrate the complexation behavior of this water-soluble bismuth oxido cluster towards polyacrylate. The cluster degenerates from an octahedral to a tetrahedral motif as polyacrylate chains are wrapped around it to form a stable structure. The melting point of the composite material is lower than that of the pure polyacrylate matrix.

It is the unusual water solubility of the bismuth oxido cluster investigated that makes possible the synthesis of this hybrid material, a water-soluble transparent solid with a narrow size distribution, which is potentially applicable as bone cement.

Author: Michael Mehring, Technische Universität Chemnitz (Germany), http://www.tu-chemnitz.de/chemie/koord/

Title: A Novel Water-Soluble Hexanuclear Bismuth Oxido Cluster – Synthesis, Structure and Complexation with Polyacrylate

European Journal of Inorganic Chemistry , 2010, No. 30, 4763–4769, Permalink to the article: http://dx.doi.org/10.1002/ejic.201000753

Media Contact

Michael Mehring Wiley-VCH

Alle Nachrichten aus der Kategorie: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Scientists achieve higher precision weak force measurement between protons, neutrons

Through a one-of-a-kind experiment at the Department of Energy’s Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak…

High-performance single-atom catalysts for high-temperature fuel cells

Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate…

New method allows precise gene control by light

A novel optical switch makes it possible to precisely control the lifespan of genetic “copies”. These are used by the cell as building instructions for the production of proteins. The…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close