Ultra-flexible endovascular probe
… records deep-brain activity in rats, without surgery.
A new ultra-small and ultra-flexible electronic neural implant, delivered via blood vessels, can record single-neuron activity deep within the brains of rats, according to new study.
“This technology could enable long-term, minimally invasive bioelectronic interfaces with deep-brain regions“, writes Brian Timko in a related Perspective. Brain-machine interfaces (BMIs) enable direct electrical communication between the brain and external electronic systems. They allow brain activity to directly control devices such as prostheses or modulate nerve or muscle function, which can help individuals with paralysis or neurological disorders regain function.
However, most conventional BMIs are limited to measuring neural activity at the brain’s surface. Recording single-neuron activity from deep brain regions often requires invasive intracranial surgery to implant probes, which can result in infection, inflammation, and damage to brain tissues. An alternative approach to implanting bioprobes into deep-brain regions is via the brain’s vascular network.
Here, Anqi Zhang and colleagues present ultra-flexible micro-endovascular (MEV) probes that can be precisely delivered to deep-brain regions via blood vessels. Zhang et al. designed an ultra-small and flexible mesh-like electronic recording device that can be loaded onto a flexible microcatheter and implanted into sub-100-micron scale blood vessels of the inner brain. Once delivered, the device expands like a stent to record neuronal signals across the vascular wall without damaging the brain or its vasculature.
To evaluate the MEV probe’s potential in vivo, Zhang et al. implanted the injectable probe into the vasculature of rat brains and demonstrated the ability to measure local field potentials and single-neuron activity in the cortex and olfactory bulb. What’s more, the authors show that the implanted devices exhibited long-term stability, caused no substantial change to cerebral blood flow or rat behavior, and elicited a minimal immune response. Timko notes that future iterations of such devices could provide tailored therapies to the patient by recording and decoding their neural activity and then providing the appropriate modulatory stimuli.
Journal: Science
DOI: 10.1126/science.adh3916
Article Title: Ultra-flexible endovascular probes for brain recording through micron-scale vasculature
Article Publication Date: 21-Jul-2023
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Milestone in Defining Electrical Units
Scientists at the University of Würzburg and the German national metrology institute (PTB) have carried out an experiment that realizes a new kind of quantum standard of resistance. It’s based…
On the trail of the 2011 mega earthquake
What was the cause of the great Tōhoku earthquake of 2011, and how can we better understand geological processes in order to protect coastal infrastructure in the long term –…
Swelling streams
– climate change causes more sediment in high-mountain rivers. Many high-mountain rivers in Asia transport more sediment downstream compared to a few years ago. Changes in sediment levels have a…