New therapeutic target for prostate cancer identified

Directly targeting microRNA-125b to block androgen receptor activity represents a novel approach for treating castrate-resistant prostate cancer. This promising new strategy for improving the effectiveness of anti-androgenic and other hormonal therapies is described in an article in BioResearch Open Access, a new bimonthly peer-reviewed open access journal from Mary Ann Liebert, Inc.. The article is available free online at the BioResearch Open Access website.

Prostate cancer is the most common non-skin cancer affecting men and the second most common cause of cancer death among men. In the article “miR-125b Regulation of Androgen Receptor Signaling Via Modulation of the Receptor Complex Co-Repressor NCOR2,” Xiaoping Yang, Lynne Bernis, Lih-Jen Su, Dexiang Gao, and Thomas Flaig, University of Colorado Denver (Aurora) and University of Minnesota (Duluth), looked for targets of microRNA-125b that might shed light on its role in regulating prostate cancer and found that it directly inhibits NCOR2, which acts to repress the androgen receptor.

The authors point out that “the androgen receptor is a critical therapeutic target in prostate cancer” and that alterations in the receptor are essential for the development of castrate-resistant prostate cancer, in which the disease no longer responds to hormonal therapies.

“This research provides new insight into the mechanism of miR-125b regulation of castrate-resistance prostate cancer through the identification of a novel target for miR-125b,” says Editor-in-Chief Jane Taylor, PhD, MRC Centre for Regenerative Medicine, University of Edinburgh, Scotland. “The clinical implications of this study are that targeted regulation of this miRNA may lead to more effective anticancer therapies.”

About the Journal

BioResearch Open Access is a bimonthly peer-reviewed open access journal that provides a new rapid-publication forum for a broad range of scientific topics including molecular and cellular biology, tissue engineering and biomaterials, bioengineering, regenerative medicine, stem cells, gene therapy, systems biology, genetics, biochemistry, virology, microbiology, and neuroscience. All articles are published within 4 weeks of acceptance and are fully open access and posted on PubMedCentral. All journal content is available online at the BioResearch Open Access website.
About the Publisher

Mary Ann Liebert, Inc., is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Tissue Engineering, Stem Cells and Development, Human Gene Therapy and HGT Methods, and AIDS Research and Human Retroviruses. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 70 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc. website.
Mary Ann Liebert, Inc. 140 Huguenot St., New Rochelle, NY 10801-5215 www.liebertpub.com

Phone: (914) 740-2100 (800) M-LIEBERT Fax: (914) 740-2101

Media Contact

Vicki Cohn EurekAlert!

Further information:

http://www.liebertpub.com

All news from this category: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Exploring the evolution of stars

Fabian Schneider leads the new research group “Stellar Evolution Theory” (SET) at the Heidelberg Institute for Theoretical Studies (HITS). The astrophysicist explores the turbulent life of massive binary stars and…

Sustainable insulating material for shipping temperature-sensitive products

Researchers at the Institute of Natural Products Engineering at TU Dresden have developed an insulating material made from recycled paper for shipping temperature-sensitive foods and medicines. As part of a…

Helium nuclei at the surface of heavy nuclei discovered

Research team confirms a new nuclear property predicted by theory Scientists are able to selectively knockout nucleons and preformed nuclear clusters from atomic nuclei using high-energy proton beams. In an…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close