The underestimated mutation potential of retrogenes

Retrogene function
© MPI f. Evolutionary Biology

mRNA molecules from retrogenes are reverse transcribed to DNA and incorporated into the genome.

A new study from scientists of the Max Planck Institute for Evolutionary Biology in Plön, Germany, and the Chinese Academy of Sciences in Beijing shows that the potential genetic burden of mutations arising from retrogenes is significantly greater than originally thought.

Genetic information is stored in DNA and transcribed as mRNA. The mRNA is usually translated into proteins. However, it has long been known that mRNA can also be reverse transcribed to DNA and integrated back into the genome. Such cases are referred to as retrogenes.

In an article, a team from the Max Planck Institute for Evolutionary Biology in Plön and the Zoological Institute of the Chinese Academy of Sciences in Beijing now reports that this process was previously underestimated by at least a factor of one thousand and that it is an important new mutation mechanism.

There are two main reasons for this. On one hand, the common search algorithms used in genome sequence analysis do not usually take new insertions of retrogenes into account. These therefore remain hidden in the mass of data. Only with an optimized algorithm like the one developed by the scientists can these insertions be systematically discovered. On the other hand, the authors showed that most of the insertions are relatively short-lived. In previous genome comparisons between species, they appear to be comparatively rare.

Mutation by retrogenes is usually harmful

For this most recent study, it was therefore crucial to examine populations that have only recently developed. The authors found that mouse populations that have been separated for only about 3000 years carry different retrogenes (i.e. in each population, retrogenes emerge at a very high rate but are also lost again comparatively quickly). This is because retrogenes can be harmful – even if they are integrated into non-coding DNA. If retrogenes are transcribed back into mRNA (as is the case for most of them), this new mRNA can negatively influence the mRNA of the gene from which they originated. The retrogene thus acts as a regulatory mutation, which is usually harmful.

The scientists show that the genetic burden of this mechanism is higher than that of the point mutations, which until now have been the primary focus of investigations. They therefore suggest that the search for disease-causing mutations also take the retrogene mechanism into account.

###

Original publication

Wenyu Zhang, Chen Xie, Kristian Ullrich, Yong E. Zhang & Diethard Tautz (2021)
The mutational load in natural populations is significantly affected by high primary rates of retroposition
Proceedings of the National Academy of Sciences USA , PNAS February 9, 2021 118 (6)

Media Contact

Maren Lehmann
Max-Planck-Gesellschaft

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors