Technology Targets Genetic Disorders Linked to X Chromosome

The method, developed in cooperation with RainDance Technologies, is described in the Oct. 2011 issue of Genomics. Senior author Michael Zwick, PhD, assistant professor of human genetics at Emory University School of Medicine, is using the method to identify genetic variants that contribute to autism spectrum disorders.

Because the X chromosome is a hotspot for genes that are suspected of contributing to autism and intellectual disability, the Emory team’s finding could speed new discoveries and eventually make routine clinical diagnosis of autism and intellectual disability easier.

“This technology has the potential to be a valuable tool for genetic researchers across a wide variety of applications,” Zwick says. “Our data shows that it can support the routine sequencing of the exons of the human X chromosome in a uniform, accurate and comprehensive way.”

The team’s sequencing method does not read all the letters of the genetic code in the X chromosome from beginning to end. Instead, it targets more than 800 “exons”: all the genes that get read out and made into RNA.

A direct comparison with another method of target selection called oligonucleotide capture showed that the team’s technique needed between three and seven times fewer sequence reads to achieve high levels of accuracy and completeness, potentially meaning lower costs.

The Emory team’s experiments showed that their technique could read 97 percent of targeted sequences at high depth with an accuracy of 99.5 percent. The team used data from the HapMap Project, a partnership coordinated by the Human Genome Research Institute, as a reference standard for genetic sequence variation.Sex is determined by having two X chromosomes (female) or an X and a Y chromosome (male). Because males have only a single X chromosome, a mutation in a gene on the X chromosome is more likely to affect a male than a female because males lack another copy of the same gene to compensate. This pattern of inheritance can contribute to disorders that disproportionately affect males, such as autism spectrum disorder or intellectual disability.

Modern DNA sequencing techniques use the polymerase chain reaction (PCR) to isolate and “amplify” the target DNA scientists want to read. RainDance Technologies has developed a single molecule microdroplet-based technology that enables scientists to target up to 20,000 genomic loci in a single sample, saving time, space and cost while increasing reliability and ease of use. The reactions take place in millions of self-contained droplets, allowing each to amplify a different piece of DNA within an emulsion.

Reference:

K. Mondal, A.C. Shetty, V. Patel, D.J. Cutler and M.E. Zwick. Targeted sequencing of the human X chromosome exome. Genomics Vol. 98, Issue 4, pp. 260-265 (Oct. 2011).

Writer: Quinn Eastman

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service.

Learn more about Emory’s health sciences:
Blog: http://emoryhealthblog.com
Twitter: @emoryhealthsci
Web: http://emoryhealthsciences.org

Media Contact

Holly Korschun EurekAlert!

Further information:

http://www.emory.edu

All news from this category: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Seawater as an electrical cable !?

Wireless power transfers in the ocean For drones that can be stationed underwater for the adoption of ICT in mariculture. Associate professor Masaya Tamura, Kousuke Murai (who has completed the…

Rare quadruple-helix DNA found in living human cells with glowing probes

New probes allow scientists to see four-stranded DNA interacting with molecules inside living human cells, unravelling its role in cellular processes. DNA usually forms the classic double helix shape of…

A rift in the retina may help repair the optic nerve

In experiments in mouse tissues and human cells, Johns Hopkins Medicine researchers say they have found that removing a membrane that lines the back of the eye may improve the…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close