Structure of a microbial hydrogen engine

Molecular hydrogen is discussed as promising renewable energy source and attractive alternative to fossil fuels. Many microorganisms exploit the beneficial properties of hydrogen already since more than two billion years. They accommodate dedicated enzymes that either split or evolve molecular hydrogen according to the specific metabolic requirements of the cell.

These hydrogen-converting biocatalysts are called hydrogenases and occur in nature in different varieties. Most hydrogenases become inactivated or even destroyed in the presence of molecular oxygen. This intrinsic property represents a serious problem regarding biotechnological application. However, some hydrogenases maintain their catalytic activity in the presence of oxygen.

An interdisciplinary team of scientists headed by the UniCat researchers Oliver Lenz and Bärbel Friedrich from Humboldt-Universitaet zu Berlin and Patrick Scheerer and Christian Spahn from Charité – Universitätsmedizin Berlin now succeeded in solving the first X-ray crystal structure of a hydro-genase that produces hydrogen even at atmospheric oxygen concentration.

The X-ray crystal structure allows detailed insights into the three-dimensional architecture of the enzyme and its metal cofactors which participate in catalysis. The results have been published in Nature online (http://dx.doi.org/10.1038/nature10505). Interestingly, the hydrogenase contains a novel iron-sulfur center which acts as an electronic switch in the course of detoxification of detrimental oxygen. With this discovery, the scientists could substantiate the hypothesis that this particular group of hydro-genases is able to convert both, hydrogen and oxygen in a catalytic manner. During catalysis, oxygen becomes reduced to harmless water.

The new results are particularly relevant for fundamental research. More-over, also the biotechnological application of hydrogenases, e.g. solar-driven hydrogen production by photosynthetic microorganisms and enzyme-driven biological fuel cells, may profit from the new findings. Furthermore, it is anticipated that the novel iron-sulfur center will inspire chemists to design model compounds with improved catalytic properties.

UniCat
“Unifying Concepts in Catalysis” (UniCat) is the Cluster of Excellence within the framework of the German Initiative for Excellence researching the economically important field of catalysis. More than 250 chemists, physicists, biologists and engineers from four universities and two Max Planck research institutes from Berlin and Potsdam are involved in this interdisciplinary research network. The Cluster is hosted by the Technische Universität Berlin. The subject areas covered range from the chemical conversion of natural and biogas, the activation of carbon dioxide and the creation of hydrogen from light and water, to the synthesis of active ingredients using enzymes.

Published in: Fritsch, J., P. Scheerer, S. Frielingsdorf, S. Kroschinsky, B. Friedrich, O. Lenz & C. M. Spahn. The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature doi: 10.1038/nature10505 (2011)

For further information, please contact:

Dr. Oliver Lenz, Institut für Biologie / Mikrobiologie der Humboldt-Universität zu Berlin, Germany, Phone: +49 (0) 30/2093 8173, E-mail: oliver.lenz@cms.hu-berlin.de

Dr. Martin Penno, UniCat Cluster of Excellence, Public Relations Officer
Technische Universität Berlin, Berlin, Germany, Phone: + 49 (0) 30/314-28 592, E-mail: martin.penno@tu-berlin.de

Media Contact

Stefanie Terp idw

Further information:

http://www.tu-berlin.de

All news from this category: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Seawater as an electrical cable !?

Wireless power transfers in the ocean For drones that can be stationed underwater for the adoption of ICT in mariculture. Associate professor Masaya Tamura, Kousuke Murai (who has completed the…

Rare quadruple-helix DNA found in living human cells with glowing probes

New probes allow scientists to see four-stranded DNA interacting with molecules inside living human cells, unravelling its role in cellular processes. DNA usually forms the classic double helix shape of…

A rift in the retina may help repair the optic nerve

In experiments in mouse tissues and human cells, Johns Hopkins Medicine researchers say they have found that removing a membrane that lines the back of the eye may improve the…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close