Scientists discover new concept of bacterial gene regulation

Microbiologist Prof. Dr Kai Papenfort from the University of Jena. Anne Günther/University Jena

Bacteria are always with us: These tiny organisms are found within and on our body as is the case with all animals and plants. As part of a healthy microbiome they ensure our wellbeing.

But if the microbial community gets dysbalanced, infections can follow. Even in soil and water they are a crucial component of the respective environments and their functioning.

Still, we are just beginning to understand these essential unicellular organisms. The Jena microbiologist Prof. Kai Papenfort and his team were able to shed more light on this subject with their latest publication in the journal eLife (https://doi.org/10.7554/eLife.58836).

They discovered a new mechanism of autoregulation during gene expression that relies on small regulatory ribonucleic acids (sRNAs) and the major endoribonuclease RNase E.

“This autoregulation controls gene expression – that means, the proteins are synthesized based on genetic information. Bacteria use this process to adapt to their environment for example,” explains Papenfort, Chair of General Microbiology at the Friedrich Schiller University Jena.

The sRNAs play a decisive role in gene regulation. Through their interaction with the messenger RNA they influence the structure or metabolism of the bacterium, among other things.

“Based on the collected data, we were able to show that sRNAs from a specific section of the messenger RNA serve as autoregulatory elements. That allows negative feedback control at the post-transcriptional level,” says Papenfort. Negative feedback regulation is very common in biology. It often has a stabilising effect.

For example, in humans both the regulation of body temperature and blood pressure are due to negative feedback regulation. Normally, the feedback controls are triggered by the corresponding proteins during transcription.

“It is notable, that the autoregulatory small RNAs we have discovered are independent of auxiliary transcription factors. Therefore, they provide a more rapid response,” continues Papenfort.

With the findings from this study, Papenfort's team contributes to the research of the Cluster of Excellence “Balance of the Microverse” at the Friedrich Schiller University Jena. Its goal is to generate a holistic understanding of microorganisms, their interaction and communication with each other and with their environment.

Prof. Dr Kai Papenfort
Institute of Microbiology
Friedrich Schiller University Jena
Hans-Knöll-Straße 2
07745 Jena
Phone: 03641 508613
Email: kai.papenfort@uni-jena.de

Hoyos M et al. Gene autoregulation by 3’ UTR-derived bacterial small RNAs. eLife 2020;9:e58836 doi: 10.7554/eLife.58836

Media Contact

Alena Gold idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-jena.de/

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Intermolecular rocking vibrations open up channels for ultrafast singlet fission

The search for new, more efficient materials to harvest solar energy is a major research focus around the world. Until now, silicon has been the material of choice for solar…

Comet Chury’s ultraviolet aurora

On Earth, auroras, also called northern lights, have always fascinated people. An international consortium involving the University of Bern has now discovered such auroras in the ultraviolet wavelength range at…

Extra stability for magnetic knots

Scientists from Kiel find a new mechanism for the stabilization of skyrmions Tiny magnetic whirls that can occur in materials – so-called skyrmions – hold high promises for novel electronic…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close