Scientists developed enzymes with remote control

The new system's scheme Credit: ITMO University

Enzymes are involved in a variety of reactions in living organisms, and their effectiveness depends on a variety of conditions. Although usually the enzyme activity is controlled chemically, researchers from ITMO University showed that this can be done remotely using physical methods such as radio frequency field.

To make radio-controlled enzymes, the scientists synthesized a special complex in which an enzyme is enclosed in a rigid porous framework of magnetite nanoparticles.

Whenever the radio field is applied, the nanoparticles adsorb radio emission and heat up, passing additional energy to the enzyme and resulting in the enzymatic reaction rate acceleration.

An experiment conducted on a model enzyme, carbonic anhydrase, demonstrated that the reaction rate can be increased by more than four times.

“There are very few studies out there that explore enzyme manipulation through the radio waves. We were the first who managed to increase the activity of a non-thermostable enzyme. Typically, these enzymes change the conformation at high temperatures and then stop working. But placed within the rigid framework of nanoparticles, the enzyme is stabilized from structure rearrangements as the nanoparticles mechanically restrict the enzyme mobility,” comments Andrey Drozdov, member of ITMO University's SCAMT Laboratory.

There are two key parameters among the advantages of the radio emission used in the work. On the one hand, such radio waves can easily go through the tissues, and on the other, they are absolutely harmless to the body. Thus, by using the radiofrequency field, you can control the activity of enzymes in the body and adjust cell metabolism. In the near future, scientists plan to try out this method on other enzymes in an attempt to influence the vital activity of bacteria or cells.

Since this topic has a lot of potentials, further work will focus on using the technique with other enzymes, as well as in living cells. For example, it is still unclear whether it is possible with this method to make bacteria or cells divide more often or, on the contrary, to stop their division,” notes Yulia Andreeva, the first author of the study.

###

Reference: Enzymatic Nanocomposites with Radio Frequency Field-Modulated Activity. Yulia I. Andreeva et al. ACS Biomaterials Science & Engineering. 30 October, 2018

https://pubs.acs.org/doi/10.1021/acsbiomaterials.8b00838

Media Contact

Dmitry Malkov
dvmalkov@corp.ifmo.ru
7-953-377-5508

 @spbifmo_en

http://en.ifmo.ru/ 

Media Contact

Dmitry Malkov EurekAlert!

All news from this category: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Bringing atoms to a standstill: NIST miniaturizes laser cooling

It’s cool to be small. Scientists at the National Institute of Standards and Technology (NIST) have miniaturized the optical components required to cool atoms down to a few thousandths of…

Record-breaking laser link could help us test whether Einstein was right

Scientists from the International Centre for Radio Astronomy Research (ICRAR) and The University of Western Australia (UWA) have set a world record for the most stable transmission of a laser signal through…

Adaptive optics with cascading corrective elements

A cascaded dual deformable phase plate wavefront modulator enables direct AO integration with existing microscopes–doubling the aberration correction range and greatly improving image quality. Microscopy is the workhorse of contemporary…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close