Researchers at Harvard's Wyss Institute Develop Technology to Produce Sugar from Photosynthetic Bacteria

This photosynthetic factory could also reduce the carbon dioxide emissions associated with transporting sugar globally from producing countries; lead to greater availability of biodegradable plastics; and allow capture of harmful CO2 emissions from power plants and industrial facilities.

In addition to its positive environmental impact, the technology offers potential economic advantages. Because the production methods use photosynthesis – the process by which living things are assembled using only CO2 and sunlight – the cost of making sugars, lactic acid, and other compounds would be significantly lower than traditional methods.

“What we’re doing is using genetic engineering to get organisms to act the way we want them to—in this case producing food additives,” said Wyss Institute senior staff scientist Jeffrey Way, Ph.D. “These discoveries have significant practical implications in moving toward a green economy.”

In addition to Dr. Way, researchers on this effort include Wyss Institute core faculty member Professor Pamela Silver, Ph.D., also of Harvard Medical School; and Henrike Niederholtmeyer, Bernd T. Wolfstadter, and David Savage, Ph.D., all of Harvard Medical School.

Sugar is primarily produced from sugar cane, which grows only in tropical and subtropical climates. By enabling production almost anywhere in the world, this living cellular manufacturing plant could greatly reduce the cost and emissions associated with transporting millions of tons of sugar to consumers every year. It could also expand the availability of biodegradable plastics by reducing the cost of lactic acid, a key building block in their production.

The current work by Way and Silver’s team is the latest innovation in a wide-ranging program in which the Wyss Institute is working with various partner institutions to develop environmentally sustainable ways to produce biofuels, hydrogen, and other high value chemicals and food additives.

“Our mission at the Wyss Institute is to use Nature’s design principles to create solutions in medicine, manufacturing, energy, and architecture that will lead to a more sustainable world,” said Don Ingber, Ph.D., M.D., Founding Director of the Wyss Institute. “This work is an important step in that direction.”

Contact:
Mary Tolikas
mary.tolikas@wyss.harvard.edu
The Wyss Institute for Biologically Inspired Engineering at Harvard University uses Nature’s design principles to create breakthrough technologies that will revolutionize medicine, industry, and the environment. Working as an alliance among Harvard’s schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Children’s Hospital Boston, Dana Farber Cancer Institute, University of Massachusetts Medical School, and Boston University, the Institute crosses disciplinary and institutional barriers to engage in high-risk, fundamental research that leads to transformative change. By applying biological principles, Wyss researchers are developing innovative new engineering solutions for healthcare, manufacturing, robotics, energy and sustainable architecture. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances and new startups.

Media Contact

Mary Tolikas EurekAlert!

More Information:

http://www.wyss.harvard.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Security vulnerability in browser interface

… allows computer access via graphics card. Researchers at Graz University of Technology were successful with three different side-channel attacks on graphics cards via the WebGPU browser interface. The attacks…

A closer look at mechanochemistry

Ferdi Schüth and his team at the Max Planck Institut für Kohlenforschung in Mülheim/Germany have been studying the phenomena of mechanochemistry for several years. But what actually happens at the…

Severe Vulnerabilities Discovered in Software to Protect Internet Routing

A research team from the National Research Center for Applied Cybersecurity ATHENE led by Prof. Dr. Haya Schulmann has uncovered 18 vulnerabilities in crucial software components of Resource Public Key…

Partners & Sponsors