Research team creates new possibilities for medicine and materials sciences
Cellulose produced by plants and bacteria is the most important material of biological origin on the planet. Acting as the main component in plant cell walls, cellulose gives plants their strength and flexibility. Wood, cotton and linen are made up almost exclusively of this material.
Now, the research team headed up by Prof. Dr. Regine Hengge, of the Humboldt-University of Berlin (HU) and her colleague, Prof. Dr. Lynette Cegelski, from Stanford University (California) has discovered that bacteria can not only produce cellulose, but can also chemically modify it using enzymes.
The discovery of this process opens up entirely new prospects: in the fight against diseases, for example. Pathogens such as salmonella modify cellulose in order to bind onto biofilms.
Through this mechanism, they can protect themselves from antibiotics and the immune system, and cause chronic infections.
Using targeted molecular design of enzymes, a diverse range of cellulose variants could be created in the future, with material properties that would have been completely inconceivable until now.
The detailed research results were published in the specialist journal, Science.
Publication
Thongsomboon, W., Serra, D.O Thongsomboon, W., Serra, D.O., Possling, A., Hadjineophytou, C., Hengge*, R., Cegelski,* L. (2018): Phosphoethanolamine cellulose: A naturally produced chemically modified cellulose. Science, 19 January 2018
*both of the final two authors cited are corresponding authors
Link
http://science.sciencemag.org/content/359/6373/334
Contact
Prof. Dr. Regine Hengge
Institute of Biology
Humboldt-Universität of Berlin
Tel.: 030 2093-49684
regine.hengge@hu-berlin.de
Media Contact
More Information:
http://www.hu-berlin.de/All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
A Job Well Done: How Hiroshima’s Groundwater Strategy Helped Manage Floods
Converting Disasters into Opportunities Society is often vulnerable to disasters, but how humans manage during and after can turn devastation into opportunities for improved resilience. An Alternative Water Source: Private…
Shaping the Future: DNA Nanorobots That Can Modify Synthetic Cells
Scientists at the University of Stuttgart have succeeded in controlling the structure and function of biological membranes with the help of “DNA origami”. The system they developed may facilitate the…
At What Cost? Smoking Linked to Decreased Earnings, Less-Educated Workers
A new paper in Nicotine & Tobacco Research, published by Oxford University Press, finds that smoking has a negative effect on earnings among younger workers. This is particularly true among the…