New research helps explain how tumours go undetected by the body

Under normal circumstances, the immune system creates sustained inflammation around a dangerous pathogen or injury which tells the body that there is a problem. However, in the case of tumours, certain cellular mechanisms counteract inflammation which can cause the tumour to go undetected, making it even harder for the body to expel.

The researchers at King's College London, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), discovered that regulatory T cells can reverse the role of a key immune cell called a macrophage which is normally involved in causing inflammation. Regulatory T cells are cells that regulate the immune system to stop it over-responding to every external stimulus and only deal with genuinely harmful pathogens or injuries. The research shows that they can achieve this by encouraging macrophages to instead dampen down the inflammatory response that is automatically induced by all possible threats to the body, even those that turn out to be harmless.

Dr Leonie Taams, research leader explains: “A relatively harmless stimulus, such as a small cut, will automatically be treated by the body as something dangerous and will cause macrophages to promote inflammation. We discovered that it is then the regulatory T cells' responsibility to make the macrophages promote anti-inflammation to counteract the initial response, as it is not a real danger. This helps keep the immune system stable and prevents the body over-reacting to everything in its environment.

“However problems can occur with tumours, where many regulatory T cells promoting a strong anti-inflammatory response are present. Neutralising an inflammatory response in this scenario can cause the tumour to fall under the radar of the body's immune system and 'trick' it into believing that there is no problem.

“We hope to be able to use this new knowledge about the relationship between regulatory T cells and macrophages to find more effective treatments for tumours. Interestingly, we also hope to use the same knowledge to achieve the opposite result and block chronic inflammation such as that which occurs in rheumatoid arthritis.”

Media Contact

Michelle Kilfoyle alfa

Weitere Informationen:

http://www.bbsrc.ac.uk

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Customized programming of human stem cells

Induced pluripotent stem cells (iPS) have the potential to convert into a wide variety of cell types and tissues. However, the “recipes” for this conversion are often complicated and difficult…

Electronic skin has a strong future stretching ahead

A material that mimics human skin in strength, stretchability and sensitivity could be used to collect biological data in real time. Electronic skin, or e-skin, may play an important role…

Fast-moving gas flowing away from young star caused by icy comet vaporisation

A unique stage of planetary system evolution has been imaged by astronomers, showing fast-moving carbon monoxide gas flowing away from a star system over 400 light years away, a discovery…

Partners

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close